

© 2013-2015 MICRORISC s.r.o. www.iqrf.org Tech_Guide_DPA_Framework150805 Page 1

IQRF

DPA Framework

Technical Guide

Version v2. 20

IQRF OS v3.0 7D

5. 8. 2015

 IQRF DPA

© 2013-2015 MICRORISC s.r.o. www.iqrf.org Tech_Guide_DPA_Framework150805 Page 2

Table of Contents

1 Introduction ... 6
2 Basics ... 6

2.1 Device types .. 6
2.2 RF Modes .. 6
2.3 Interfaces ... 6

2.3.1 SPI ... 6
2.3.2 UART ... 7
2.3.3 Peripherals vs. Interfaces .. 8
2.3.3.1 Peripherals ... 8

2.4 DPA Plug-in filename .. 8
2.5 General message parameters ... 8
2.6 DPA Messages .. 9

2.6.1.1 Interfaces ... 10
2.6.2 DPA Request ... 10
2.6.3 DPA Confirmation .. 10
2.6.4 DPA Notification... 13
2.6.5 DPA Response .. 13
2.6.6 Examples ... 14

2.7 Device exploration ... 15
2.7.1 Peripheral enumeration ... 15
2.7.1.1 Source code support ... 16
2.7.2 Get peripheral information ... 16
2.7.2.1 Source code support ... 16
2.7.3 Get information for more peripherals ... 16
2.7.3.1 Source code support ... 17

3 Peripherals ... 17
3.1 Standard operations in general ... 17

3.1.1 Writing to peripheral .. 17
3.1.1.1 Source code support ... 17
3.1.2 Reading from peripheral .. 17
3.1.2.1 Source code support ... 18

3.2 Coordinator .. 18
3.2.1 Peripheral information ... 18
3.2.2 Get addressing information ... 18
3.2.2.1 Source code support ... 18
3.2.3 Get discovered nodes .. 18
3.2.4 Get bonded nodes ... 18
3.2.4.1 Source code support ... 19
3.2.5 Clear all bonds ... 19
3.2.6 Bond node ... 19
3.2.6.1 Source code support ... 19
3.2.7 Remove bonded node ... 20
3.2.7.1 Source code support ... 20
3.2.8 Re-bond node .. 20
3.2.8.1 Source code support ... 21
3.2.9 Discovery ... 21
3.2.9.1 Source code support ... 21
3.2.10 Set DPA Param ... 22
3.2.10.1 Source code support ... 22
3.2.11 Set Hops .. 23
3.2.11.1 Source code support ... 23
3.2.12 Discovery data ... 23
3.2.12.1 Source code support ... 23
3.2.13 Backup ... 24
3.2.13.1 Source code support ... 24
3.2.14 Restore .. 24
3.2.14.1 Source code support ... 25
3.2.15 Authorize bond... 25
3.2.15.1 Source code support ... 25
3.2.16 Bridge .. 25

 IQRF DPA

© 2013-2015 MICRORISC s.r.o. www.iqrf.org Tech_Guide_DPA_Framework150805 Page 3

3.2.16.1 Source code support ... 27
3.2.17 Enable remote bonding ... 28
3.2.18 Read remotely bonded module ID ... 28
3.2.19 Clear remotely bonded module ID ... 28

3.3 Node .. 28
3.3.1 Peripheral information ... 28
3.3.2 Read .. 28
3.3.2.1 Source code support ... 28
3.3.3 Remove bond .. 29
3.3.4 Enable remote bonding ... 29
3.3.4.1 Source code support ... 29
3.3.5 Read remotely bonded module ID ... 30
3.3.5.1 Source code support ... 30
3.3.6 Clear remotely bonded module ID ... 30
3.3.7 Remove bond address .. 30
3.3.8 Backup ... 31
3.3.9 Restore .. 31

3.4 OS .. 31
3.4.1 Peripheral information ... 31
3.4.2 Read .. 31
3.4.2.1 Source code support ... 31
3.4.3 Reset ... 31
3.4.4 Restart ... 32
3.4.5 Read HWP configuration ... 32
3.4.5.1 Source code support ... 32
3.4.6 Write HWP configuration ... 32
3.4.6.1 Source code support ... 33
3.4.7 Run RFPGM .. 33
3.4.8 Sleep .. 34
3.4.8.1 Source code support ... 34
3.4.9 Batch .. 35
3.4.10 Set USEC .. 35
3.4.10.1 Source code support ... 35
3.4.11 Set MID .. 36
3.4.11.1 Source code support ... 36

3.5 EEPROM ... 36
3.5.1 Peripheral information ... 36
3.5.2 Read .. 36
3.5.2.1 Source code support ... 37
3.5.3 Write .. 37
3.5.3.1 Source code support ... 37

3.6 EEEPROM ... 37
3.6.1 Peripheral information ... 37
3.6.2 Read & Write ... 38

3.7 RAM ... 38
3.7.1.1 Source code support ... 38
3.7.2 Peripheral information ... 38
3.7.3 Read & Write ... 38

3.8 SPI (Slave) ... 38
3.8.1 Peripheral information ... 38
3.8.2 Write & Read ... 38

3.9 LED .. 39
3.9.1 Peripheral information ... 39
3.9.2 Set ... 39
3.9.3 Get ... 39
3.9.4 Pulse .. 39

3.10 IO ... 39
3.10.1 Peripheral information ... 40
3.10.2 Direction ... 40
3.10.2.1 Source code support ... 40
3.10.3 Set ... 40
3.10.3.1 Source code support ... 41

 IQRF DPA

© 2013-2015 MICRORISC s.r.o. www.iqrf.org Tech_Guide_DPA_Framework150805 Page 4

3.10.4 Get ... 42
3.11 Thermometer ... 42

3.11.1 Peripheral information ... 42
3.11.2 Read .. 42
3.11.2.1 Source code support ... 42

3.12 PWM .. 43
3.12.1 Peripheral information ... 43
3.12.2 Set ... 43
3.12.2.1 Source code support ... 44

3.13 UART ... 44
3.13.1 Peripheral information ... 44
3.13.2 Open .. 44
3.13.2.1 Source code support ... 45
3.13.3 Close .. 45
3.13.4 Write & Read ... 45
3.13.4.1 Source code support ... 46

3.14 FRC ... 46
3.14.1 Peripheral information ... 46
3.14.2 Send .. 46
3.14.2.1 Source code support ... 47
3.14.3 Extra result ... 47
3.14.4 Send Selective ... 47
3.14.4.1 Source code support ... 48
3.14.5 Set FRC Params.. 48
3.14.5.1 Source code support ... 48
3.14.6 Predefined FRC Commands ... 49
3.14.6.1 Prebonding .. 49
3.14.6.2 UART or SPI data available ... 49
3.14.6.3 Acknowledged broadcast - bits .. 49
3.14.6.4 Read temperature .. 50
3.14.6.5 Acknowledged broadcast - bytes ... 50
3.14.6.6 Memory read .. 50
3.14.6.7 Memory read plus 1 ... 51
3.14.6.8 FRC response time .. 51

4 HWP Configuration ... 52
5 Device Startup .. 53
6 Autoexec .. 55
7 IO Setup ... 56
8 Custom DPA Handler ... 57

8.1 Handler Example ... 58
8.2 Events Flow ... 59

8.2.1 Coordinator .. 59
8.2.2 Node .. 60
8.2.3 General evens ... 61
8.2.3.1 Interrupt ... 61
8.2.3.2 Disable Interrupts... 61
8.2.3.3 Sleep Events .. 61

8.3 Events .. 61
8.3.1 Interrupt ... 61
8.3.2 Idle ... 62
8.3.3 Init .. 62
8.3.4 Notification ... 63
8.3.5 AfterRouting ... 63
8.3.6 BeforeSleep ... 64
8.3.7 AfterSleep .. 64
8.3.8 Reset ... 64
8.3.9 Disable Interrupts... 65
8.3.10 FrcValue .. 65
8.3.11 FrcResponseTime ... 66
8.3.12 ReceiveDpaResponse ... 66
8.3.13 IFaceReceive ... 67
8.3.14 ReceiveDpaRequest .. 67

 IQRF DPA

© 2013-2015 MICRORISC s.r.o. www.iqrf.org Tech_Guide_DPA_Framework150805 Page 5

8.3.15 BeforeSendingDpaResponse .. 67
8.3.16 PeerToPeer ... 68
8.3.17 AuthorizePreBonding ... 69
8.3.18 UserDpaValue ... 69
8.3.19 DPA Request ... 69
8.3.19.1 Enumerate Peripherals .. 69
8.3.19.2 Get Peripheral Info .. 70
8.3.19.3 Handle Peripheral Request ... 70

8.4 DPA API ... 71
8.4.1 DpaApiRfTxDpaPacket .. 71
8.4.2 DpaApiReadConfigByte ... 72
8.4.3 DpaApiSendToIFaceMaster .. 72
8.4.4 DpaApiRfTxDpaPacketCoordinator ... 73
8.4.5 DpaApiLocalRequest ... 73
8.4.6 DpaApiReturnPeripheralError .. 74

8.5 DPA API Variables .. 74
8.5.1 bit ProvidesRemoteBonding .. 74
8.5.2 bit RemoteBondingDone ... 74
8.5.3 bit IFaceMasterNotConnected ... 75
8.5.4 bit NodeWasBonded .. 75
8.5.5 bit EnableIFaceNotificationOnRead .. 75
8.5.6 uns16 DpaTicks ... 75
8.5.7 uns8 LPtoutRF ... 75
8.5.8 uns8 ResetType... 75
8.5.9 bit DSMactivated.. 75
8.5.10 uns8 UserDpaValue .. 76
8.5.11 uns8 NetDepth ... 76

9 Constants ... 77
9.1 Peripheral Numbers ... 77
9.2 Response Codes ... 77
9.3 DPA Commands .. 77
9.4 Peripheral Types ... 78
9.5 Custom DPA Handler Events .. 79
9.6 Extended Peripheral Characteristic ... 79
9.7 HW Profile IDs ... 79
9.8 LED Colors .. 79
9.9 Baud rates ... 79
9.10 User FRC Codes ... 80

10 Apendix .. 81
10.1 CRC Calculation .. 81

10.1.1 CC5X Compiler .. 81
10.1.2 C# .. 81
10.1.3 Java ... 81
10.1.4 Pascal/Delphi ... 82

11 Migration Notes ... 83
11.1 From DPA 2.13 to DPA 2.20 ... 83
11.2 From DPA 2.11 to DPA 2.13 ... 83
11.3 From DPA 2.11 to DPA 2.12 ... 83
11.4 From DPA 2.10 to DPA 2.11 ... 83
11.5 From DPA 2.01 to DPA 2.10 ... 83
11.6 From DPA 2.00 to DPA 2.01 ... 83
11.7 From DPA 1.00 to DPA 2.00 ... 83

12 Document Revisions .. 84

 IQRF DPA

© 2013-2015 MICRORISC s.r.o. www.iqrf.org Tech_Guide_DPA_Framework150805 Page 6

 1 Introduction

Direct Peripheral Access (DPA) protocol is a simple byte oriented protocol used to control services
and peripherals of IQMESH network devices (coordinator and nodes) by SPI or UART interfaces.

DPA protocol implementation is distributed in the form of IQRF plug-in. Full version runs only at IQRF
Data Controlled Transceivers (DCTR). There is a demo version that can run at ordinary IQRF Smart
Transceivers (TR).

The demo version has the following features:

¶ Maximum node network address is 5. Demo node device having unsupported address flashes
periodically red LED after reset. Demo coordinator does not allow to address, to bond and to
rebond node with an unsupported address.

¶ Some Custom DPA Handler events are not raised at demo version.

¶ Only one user peripheral PNUM = 0x20 with one PCMD = 0x00 is supported.

¶ Discovery and FRC processes are indicated by LEDs flashing by default.

 2 Basics

DPA protocol uses byte structured messages to communicate at IQMESH network. Every message
always contains four mandatory parameters NADR, PNUM, PCMD and HWPID (foursome from now).
The message can optionally hold data (array of bytes often referred to as PData throughout the
document) to be transmitted or received. They are always described next to the foursome throughout
this document. Although foursome parameters are typically described next to each other in this
document, they do not have to be stored at consecutive memory addresses at the real scenario. The
same rule does not apply to the message data.

Please note that a response, confirmation and notification (with a small exception) DPA messages
always contains the same NADR, PNUM and PCMD as the original request message except the
response message is flagged by the most significant bit of PCMD.

All values wider than byte are coded using little-endian style.

 2.1 Device types

There are several device types depending on what type of network device it implements. For each
device type there is dedicated IQRF plug-in to upload.

[C] A “pure” IQMESH Coordinator device
[N] A typical IQMESH Node device
[CN] This device implements both IQMESH Node functionality in the main network as well as
Coordinator functionality in the optional subordinate network. [CN] device periodically switches
between the RF channels of the main and subordinate networks. This might cause a loss of RF DPA
message in one network if a DPA message of the other network is served in the same time.

 2.2 RF Modes

There is a separate DPA implementation for each of the IQRF RF modes (STD, LP) (as well as for
Device types) prepared in the form of IQRF plug-in. Only STD and LP RF modes are released.

 2.3 Interfaces

The chosen interface transfers DPA message to/from the connected device. Data consist of
successively stored foursome and optional data.

 2.3.1 SPI

The SPI interface is implemented using IQRF SPI protocol described at document "SPI
Implementation in IQRF TR modules". The document specifies how to setup SPI master and the
communication over the SPI. The device always plays the role of SPI slave and the external

 IQRF DPA

© 2013-2015 MICRORISC s.r.o. www.iqrf.org Tech_Guide_DPA_Framework150805 Page 7

connected device is SPI master. The DPA protocol corresponds to the DM and DS bytes of IQRF SPI
protocol.

 2.3.2 UART

UART is configured 8 data bits, 1 stop bit and no parity bit. UART baud rate is specified at HWP
Configuration. Size of both RX and TX buffers is 64 bytes.

HDLC byte stuffing protocol is used to frame and encode DPA messages. Every data frame (DPA
message) starts and ends with byte 0x7e (Flag Sequence). When actual data byte equals to 0x7e
(Flag Sequence) or 0x7d (Control Escape) then it is replaced by two bytes: 1

st
 byte is 0x7d (Control

Escape) and 2
nd

 byte equals to original byte value XORed by 0x20 (Escape Bit).

Additionally an 8-bit CRC is used to protect data. The CRC value is added after all data bytes and it is
coded by the same HDLC byte stuffing algorithm. CRC is compatible with 1-Wire CRC with an initial
value 0xFF, polynomial is x

8
+x

5
+x

4
+1. See CRC Calculation for the implementations of CRC

algorithm.

Example

The example shows encoded DPA Request “write bytes 0x7E, 0x7D at the address 0 of coordinator’s
RAM”:

NADR=0x0000(Coordinator), PNUM=0x05(RAM peripheral), PCMD=0x01(RAM write), HWPID=0xFFFF, Data={00 (address),
{ 7E, 7D } (bytes to write)

CRC from bytes {0x00, 0x00, 0x05, 0x01, 0xff, 0xff, 0x00, 0x7e, 0x7d} = 0x 19

Data in
index

0 1 2 3 4 5 6 7 8 CRC

Data in 0x00 0x00 0x05 0x01 0xff 0xff 0x00 0x7e 0x7d 0x19

Data out
index

0 1 2 3 4 5 6 7 8 9 10 11 12 13

Data out 0x7e 0x00 0x00 0x05 0x01 0xff 0xff 0x00 0x7d 0x5e 0x7d 0x5d 0x19 0x7e

Note

F
la

g
 S

e
q
u
e

n
c
e

o
ri
g
in

a
l
b
y
te

o
ri
g
in

a
l
b
y
te

o
ri
g
in

a
l
b
y
te

o
ri
g
in

a
l
b
y
te

o
ri
g
in

a
l
b
y
te

o
ri
g
in

a
l
b
y
te

o
ri
g
in

a
l
b
y
te

C
o
n
tr

o
l
E

s
c
a
p

e

0
x
7
e
 X

O
R

 0
x
2
0

C
o
n
tr

o
l
E

s
c
a
p

e

0
x
7
d
 X

O
R

 0
x
2
0

C
R

C
 =

 0
x
1
9

F
la

g
 S

e
q
u
e

n
c
e

 IQRF DPA

© 2013-2015 MICRORISC s.r.o. www.iqrf.org Tech_Guide_DPA_Framework150805 Page 8

 2.3.3 Peripherals vs. Interfaces

SPI or UART peripherals differ from SPI or UART interfaces. In general the peripheral is just byte
oriented data channel used to exchange data between network and external devices while the
interface is used to control network devices from external device using DPA messages. In case of SPI
the external device must be a SPI master as the DPA network device is always a SPI slave.

 2.3.3.1 Peripherals

Peripherals are typically used to control an external device connected to the [N] or [CN] device via SPI
or UART interface. The following picture shows an example where the [C] writes by UART Write &
Read DPA request a text “Hello” to the UART peripheral at [N]. There is a terminal (external device)
connected using UART to the [N]. Text “Hello” is then displayed at the terminal and text “Hi” (at this
example the terminal automatically answers “Hi” to “Hello”) is read back to the [C] at the
corresponding DPA response.

 2.4 DPA Plug-in filename

DPA protocol implementation is distributed in the form of IQRF plug-in. The plug-in filename has the
following format:

[license]HWP-[device]-[rfmode]-[interface]-[dctr]-[version]-[date].iqrf

Item Value Description

[license] General Full general HWP

Demo Demo HWP

[device] Coordinator Coordinator device [C]

Node Node device [N]

CoordinatorNode Coordinator & Node device [CN]

[rfmode] STD STD RF mode

LP LP RF mode

[interface] SPI SPI interface

UART UART interface

<empty> No interface supported ([N] at LP RF mode)

[dctr] 5xD For (DC)TRs of 5xD series

7xD For (DC)TRs of 7xD series

[version] Vabc DPA version a.bc (e.g. V213 stands for version 2.13)

[date] yymmdd Release date (e.g. 140602 stands for June 2
nd

, 2014)

 2.5 General message parameters

All numbers are in hexadecimal format unless otherwise noted.

Parameter Value [hex] Description

NADR
[2B]

00 IQMESH Coordinator
01-EF IQMESH Node address
F0-FB Reserved
FC Local (over interface) device
FD Reserved
FE IQMESH temporary address
FF IQMESH broadcast address
100-FFFF Reserved

Network device address. Although it is 2
bytes wide, the 2B addressing is not
supported (higher byte is ignored).

SPI or UART C N

> Hello
< Hi

_
UART

1. Request: CMD_UART_WRITE_READ(“Hello”)

2. Response: CMD_UART_WRITE_READ = “Hi”

 IQRF DPA

© 2013-2015 MICRORISC s.r.o. www.iqrf.org Tech_Guide_DPA_Framework150805 Page 9

PNUM
[1B]

00 COORDINATOR
01 NODE
02 OS
03 EEPROM
04 EEEPROM
05 RAM
06 LEDR
07 LEDG
08 SPI
09 IO
0A Thermometer
0B PWM

[*]

0C UART
0D FRC
0E-1F Reserved

20-6F User peripherals

70-FF Reserved

Peripheral number
(0x00 – 0x1F reserved for standard
peripherals)

1

st
 user peripheral must be always 0x20,

2
nd

 must be 0x21 etc.

PCMD
[1B]

0-3E Command value
3F-FF Reserved

Command specifying an action to be
taken. Actual allowed value range
depends on the peripheral type.
The most significant bit is reserved for
indication of DPA response message.

HWPID
[2B]

0000 Default HW Profile
xxx0 Reserved
xxx1-xxxE Certified HW Profiles
xxxF User HW Profiles
FFFF Reserved

HW profile ID (HWPID from now)
uniquely specifies the functionality of the
device, the user peripherals it
implements, its behavior etc. Only
device having the same HWPID as the
DPA request will execute the request.
When 0xFFFF is specified then device
with any HW profile ID will execute the
request. Note – HWPID numbers used
throughout this document are fictitious
ones.

PData
[0-56B]

Array of bytes. The maximum length is
limited. The current DPA version limits data
length to 56 bytes (decimal).

Optional message data.

[*] Available at Demo version [N] device only.

 2.6 DPA Messages

DPA protocol (messages) is transferred over interface that connects (DC)TR module (“slave”) to a
super-ordinate system (”master”).

¶ Master sends DPA request.

¶ If addressee (NADR) is a (remote) IQMESH Node, not a local over the interface connected device
(applies only to coordinator).

¶ Device immediately sends DPA confirmation back to the interface master.

¶ Node processes the DPA message.

¶ If the DPA message does not have a read-only (can be configured by
EnableSPInotificationOnRead) side-effect and the interface is configured for the DPA
communication at the node side, then the node sends DPA notification to its SPI master.

¶ If the DPA message was not sent using broadcast address.

¶ Node returns DPA response back to coordinator via RF.

¶ Coordinator receives the DPA response and re-sends it to the interface master.

¶ In case of a local device

¶ Device processes the DPA request. In this case the both sender and addressee addresses of
the request are equal to 0xFC (local address).

¶ Device returns DPA response back to interface master.

 IQRF DPA

© 2013-2015 MICRORISC s.r.o. www.iqrf.org Tech_Guide_DPA_Framework150805 Page 10

 2.6.1.1 Interfaces

Interface connects any ([C], [N] or [CN]) network device to the external autonomous device and allows
the external device to control the network and/or network device. By default the interface is always
enabled at [C] device because it gives an external device means to control the [C] as well as the rest
of the network. The interface at [CN] or [N] devices must be explicitly enabled at HWP Configuration.
See DPA Messages for details of the messages exchanged over the interface. Next table shows some
differences in the interface behavior at different network devices:

Topic / Device [C] [CN] and [N]

DPA Messages DPA Request (in)
DPA Confirmation (out)
DPA Response (out)

DPA Request (in)
DPA Response (out)
DPA Notification (out)

Bridge command is not notified by
DPA Notification at [CN] device.

NADR at DPA Request See NADR at General message
parameters. Invalid value
generates ERROR_NADR error
code. Both values 0x0000 and
0x00FC address the [C] device
itself.

Only value 0x00FC is allowed and it
addresses the [CN] or [N] device itself.
Other values are silently ignored.
There is no way to directly control [C]
device coupled to [CN] or [N].

See Examples of the interface usage.

 2.6.2 DPA Request

DPA request consists of foursome with optional data, depending on the actual request. DPA request is
executed only if the specified HW profile ID matches the HW profile ID of the device unless HW profile
ID in the foursome equals to 0xFFFF (HWPID_DoNotCheck).

 2.6.3 DPA Confirmation

DPA confirmation confirms a reception of DPA request by interface slave to interface master. It
consists of the same foursome that was part of the original DPA request plus following 5 additional
data bytes. The Confirmation is not returned if the Request is incorrect (e.g. if request NADR is not
valid). In this case Response with an error code is returned.

The format of the Confirmation data bytes is the following

0 1 2 3 4

STATUS_CONFIRMATION DPA Value Hops Timeslot length in 10 ms units

Hops Response

DPA Value DPA value of the device. See description.
Hops Number of hops used to deliver the DPA request to the addressed node. A

hop represents any sending of packet including sending from the sender as
well as from any routing node.

Timeslot length Timeslot length used to deliver the DPA request to the addressed node.
Please note that the timeslot used to deliver the response message from node
to coordinator can have a different length.

Hops Response Number of hops used to deliver the DPA response from the addressed node
back to coordinator. In case of broadcast this parameter is 0 as there is no
response sent back to coordinator.

 IQRF DPA

© 2013-2015 MICRORISC s.r.o. www.iqrf.org Tech_Guide_DPA_Framework150805 Page 11

IQMESH timeslot length depends on the PData length of the DPA messages (the values may change
depending on the version of the DPA protocol and IQRF OS version), the RF mode (STD, LP) used
and DCTR HW type.

¶ DCTR-7x

PData length
[Bytes]

Timeslot length
[ms]

STD LP STD LP

< 19 < 9 30  80

19 – 41 10 – 31 40  90

42 – 56 32 – 56 50 100

¶ DCTR-5x

PData length
[bytes]

Timeslot length
[ms]

STD LP STD LP

< 12 < 14 30  80

12 – 32 14 – 35 40  90

33 – 53 36 – 56 50 100

54 – 56 60

This knowledge can be used to implement a precise timing of the control system (master) connected
to the coordinator device by interface in order to prevent data collision (e.g. when another DPA
request is sent to the network before a routing of the previous communication is finished) at the
network.

1. Wait till the previous IQMESH routing is finished (see step 7).
2. Make sure the interface is ready (e.g. SPI status is ReadyCommunication) and no data remained

for reading from interface.
3. Send DPA request via interface.
4. Receive DPA confirmation via interface. Remember the time when the confirmation was received

(to be used later at step 7).
5. Now wait (Hops + 1) * Timeslot length * 10 ms till the DPA Request routing is finished.

Note: if it takes some extra time to prepare and send the response back at the node side then this
time must be considered (added) to the total routing time.

6. Read DPA response from the interface within the time (Hops Response + 1) * Estimated
response timeslot length * 10 ms + Safety timeout. Estimated response timeslot length is the value
based on expected length of data returned within the DPA response or it can be the worst case
(e.g. 5 = 50 ms at STD mode). If the Timeslot length from the step 5 equals to the diagnostic long
timeslot (20 = 200 ms), then use the same value for the estimated response timeslot length.

7. Find out the Actual response timeslot length from the PData length of the actual DPA response.
Now the earliest time to send something to the IQMESH network equals to: Time the DPA
confirmation was received + (Hops + 1) * Timeslot length * 10 ms + (Hops Response + 1) *
Actual response timeslot length * 10 ms. This time is used for waiting at the step 1.

Using this technique ensures reliable and optimal speed data delivery at the IQMESH network. Pay
attention to the DPA requests that produce an intentional delay at the addressed device side (e.g.
UART Write& Read, SPI Write & Read, IO Set, OS Sleep, OS Reset). Such delay (time) must be
added to the total response time. Also response time for Discovery and Bond node requests is not
predictable at all.

Example

Next figure shows processing UART Write & Read request at DCTR-7x devices. The request is
marked Request 1. It writes 10 bytes of data to node [Nn] UART peripheral, waits 20 ms and then
reads (in advance unknown) number of bytes back from UART peripheral. The network is operated at
STD mode and 200 ms diagnostic timeslot is not used.

 IQRF DPA

© 2013-2015 MICRORISC s.r.o. www.iqrf.org Tech_Guide_DPA_Framework150805 Page 12

After sending Request 1 to the coordinator [C] the [C] replies by Confirmation 1. The confirmation
reports q hops to deliver request from [C] to [Nn] with timeslot of 30 ms and also r hops to deliver
response back from [Nn] to [C]. After the confirmation is sent the [C] transmits RF packet to the
network (1

st
 hop). The packet is received by [N1] and [N1] routes the packet further (2

nd
 hop). Routed

packet is received by [N2] as expected. Then routing continues. Last but one node [Nn-1] receives the
routed packet and because of positive RF conditions and network topology the routed packet is also
early received by the addressed node [Nn]. Then [Nn-1] makes very last routing but [Nn] does not
receive the packet again.

Then DPA writes 10 bytes of data to the UART, waits another 20 ms and reads data from UART. In
our example totally 20 bytes is read which results in real timeslot of 40 ms to be used to deliver
response back from [N3] to [C].

Then [Nn] waits for the still running routing to finish. After that [Nn] transmits the response packet to the
network (1

st
 hop). The packet is received by [Nn-1] which routes the packet further (2

nd
 hop). Then

routing continues. The routed packet is received by [N2]. [N2] routes the packet to [N1]. The packet is
also received also by [C]. [C] immediately delivers Response 1 to its interface. In the same time [N1]
finally routes packet to the [C] which receives it but identifies it as the already received response thus
[C] does not report it to the interface again.

The optimistic response time is:
((q + 1) * 30 ms) + 20 ms + ((r + 1) * 30 ms)

The pessimistic response time is:
((q + 1) * 30 ms) + 20 ms + ((r + 1) * 50 ms)

But the real response time was:
((q + 1) * 30 ms) + 20 ms + ((r + 1) * 40 ms)

An optimistic response routing scenario is represented by dotted green arrows (potential 30 ms
timeslot) and a pessimistic scenario is shown by dotted red arrows (potential 50 ms timeslot).
The next Request 2 cannot be sent to the network immediately after the Response 1 is received. The
RF collision would occur. Request 2 can be issued after the actual routing finishes (end of the dotted
blue arrow) the soonest. Another approach is to send next request to the [C] after the pessimistic
(using the longest 50 ms response timeslot) is finished. For many applications that do not have to be
time optimized this is the reasonable and easy to compute way of timing.

 IQRF DPA

© 2013-2015 MICRORISC s.r.o. www.iqrf.org Tech_Guide_DPA_Framework150805 Page 13

Throughout the document in the following examples of the DPA communication the DPA Confirmation
is not usually stated as the emphasis is put on DPA request-response pair messages.

 2.6.4 DPA Notification

DPA notification notifies a connected master device at the node side that there was a DPA request
without a read-only (can be configured by EnableIFacenotificationOnRead) side-effect processed by
the node. It consists of the same foursome that was part of the original DPA request except NADR
stores address of the sender, not addressee, and HWPID contains actual HW Profile ID of device.
DPA notification is therefore always 6 bytes long.

DPA notification is issued to the connected master interface when DPA request is sent from
coordinator or when the DPA request is part of the FRC acknowledged broadcast (see Acknowledged
broadcast - bits and Acknowledged broadcast - bytes).

DPA notification is not issued in case of DPA request invoked from local interface, from
DpaApiLocalRequest or from predefined FRCs Memory read and Memory read plus 1.

 2.6.5 DPA Response

DPA response is an actual answer to the DPA request. DPA response consists of the same foursome
that was part of the original DPA request except the response message is flagged by the most
significant bit of PCMD and HWPID contains actual HW profile ID of addressed device. Then come 2
bytes containing the Response code and DPA Value. In case of error (response code is NOT equal to

Confirmation 1

Request 1
[C] [N1] [N2]

T
im

e

Response 1

[Nn-1]

3
0
 m

s

Write & Read UART (20 ms)

[Nn]

3
0
 m

s

Routing

4
0
 m

s

4
0
 m

s

4
0
 m

s

Confirmation 2

Request 2

 IQRF DPA

© 2013-2015 MICRORISC s.r.o. www.iqrf.org Tech_Guide_DPA_Framework150805 Page 14

STATUS_NO_ERROR) no additional data is present. In case of STATUS_NO_ERROR response
code the presence of the additional data depends on the DPA response type.

When composing DPA response in the Custom DPA Handler there is sometimes a need to signalize
an error response with certain Response Code. The way how to return such response is described at
chapter Handle Peripheral Request.

 2.6.6 Examples

Note: DPA Value, HWPID and data read from the memory shown in the following examples may differ
in the real scenario.

Example 1

Switching on a red LED at coordinator:

¶ DPA request (master → slave)
NADR=0x0000, PNUM=0x06, PCMD=0x01, HWPID=0xFFFF

¶ DPA response (slave → master)
NADR=0x0000, PNUM=0x06, PCMD=0x81, HWPID=0xABCD, Data={0x00} (No error), {0x07} (DPA Value)

Notes:

¶ NADR 0x0000 Specifies coordinator address (0x00FC can be used too)

¶ PNUM 0x06 Specifies red LED peripheral

¶ PCMD 0x01 Set LED On command

¶ DPA Value Coordinator’s value

Example 2

Reading 2 bytes from RAM at address 1 of the local node:

¶ DPA request (master → slave)
NADR=0x00FC, PNUM=0x05, PCMD=0x00, HWPID=0xFFFF, Data={0x01} (Address), {0x02} (Length)

¶ DPA response (slave → master)
NADR=0x00FC, PNUM=0x05, PCMD=0x80, HWPID=0xABCD
Data={0x00} (No error), {0x07} (DPA Value), {0xAB,0xCD} (Read data)

Notes:

¶ NADR 0x00FC Specifies local device address

¶ PNUM 0x05 Specifies RAM peripheral

¶ PCMD 0x00 Read command

¶ DPA Value Local node’s value

Example 3

Switching on a green LED at remote IQMESH node with address 0x0A:

¶ DPA request (master → slave)
NADR=0x000A, PNUM=0x07, PCMD=0x01, HWPID=0xFFFF

¶ DPA confirmation (slave → master)
NADR=0x000A, PNUM=0x07, PCMD=0x01, HWPID=0xFFFF, Data={0xFF} (Confirmation), {0x07} (DPA Value),
{0x06,0x03 ,0x06 } (Hops, Timeslot length, Hops response)

¶ DPA notification (slave → master) at remote node side
NADR=0x0000, PNUM=0x07, PCMD=0x01, Data=<none>

¶ DPA response (slave → master)
NADR=0x000A, PNUM=0x07, PCMD=0x81, HWPID=0xABCD, Data={0x00} (No error), {0x06} (DPA Value)

Notes:

¶ PNUM 0x07 Specifies green LED peripheral

¶ NADR 0x0000 At DPA notification specifies that the Coordinator sent the original
 request

¶ DPA Value DPA confirmation: Coordinator’s value
 DPA response: remote node’s value

 IQRF DPA

© 2013-2015 MICRORISC s.r.o. www.iqrf.org Tech_Guide_DPA_Framework150805 Page 15

 2.7 Device exploration

Device exploration can be used to obtain information about individual devices and their implemented
peripherals.

 2.7.1 Peripheral enumeration

Request

NADR PNUM PCMD HWPID

NADR 0xFF 0x3F ?

The HWPID value is ignored at peripheral enumeration command.

Response

NADR PNUM PCMD HWPID ErrN DpaValue 0 1 2 3 4 5 6 7 8 9 10 11

NADR 0xFF 0xBF ? 0 ? DpaVer PerNr StdPers HWPID HWPIDver Flags

DpaVer DPA protocol version

¶ 1
st
 byte: bits 0-6 = minor version, bit 7 = demo version

¶ 2
nd

 byte: major version
 BCD coding is used, e.g. version 12.34 is coded as 0x1234, i.e. 1

st
 byte 0x34, 2

nd
 byte

0x12
PerNr Number of user defined peripherals. User peripherals are numbered starting from

PNUM=0x20.
StdfPers Bits array (starting from LSb of the 1

st
 byte) specifying which of 32 standard

peripherals were enabled in the HWP Configuration (it is a copy of first 4 bytes of the
configuration area). If a peripheral is enabled in the configuration although it is not
supported by the device, then calling Get peripheral information or Get information for
more peripherals will return PERIPHERAL_TYPE_DUMMY peripheral type for this
peripheral thus indicating that the peripheral is actually not available.

 Bit values for Coordinator (bit 0) and Node (bit 1) peripherals are set according to the
device support of these peripherals regardless of actual bit values stored at HWP
Configuration.

HWPID Hardware profile ID, 0x0000 if default
HWPIDver Hardware profile version, 1

st
 byte = minor version, 2

nd
 byte = major version

Flags Various flags:

¶ bit 0 STD IQMESH RF Mode supported

¶ bit 1 LP IQMESH RF Mode supported

¶ bit 2-7 Reserved

Example

¶ Request
NADR=0x0000, PNUM=0xFF, PCMD=0x3F, HWPID=0xFFFF

¶ Response
NADR=0x0000, PNUM=0xFF, PCMD=0xBF, HWPID=0xABCD, Data={0x00} (No error), {0x07} (DPA

Value),{ 12, 02} (DpaVer 2.12), {01} (PerNr), {E6,06,00,00} (StdPers), {CD,AB} (HWPID), {01,00} (HWPIDver), {41} (Flags)

Coordinator (NADR=0x0000) having 1 user defined peripheral, Hardware profile ID of type 0xABCD
(version 0x0001), DPA version 0.1 (not a demo version) and these standard peripherals:

¶ 0x01 NODE

¶ 0x02 OS

¶ 0x05 RAM

¶ 0x06 LEDR

¶ 0x07 LEDG

¶ 0x09 IO

¶ 0x0A Thermometer
bit array: 11100110.00000110.00000000.00000000

 IQRF DPA

© 2013-2015 MICRORISC s.r.o. www.iqrf.org Tech_Guide_DPA_Framework150805 Page 16

 2.7.1.1 Source code support

typedef struct
{
 uns16 DpaVersion;
 uns8 UserPerNr;
 uns8 StandardPer[PNUM_USER / 8];
 uns16 HWPID;
 uns16 HWPIDver;
 uns8 Flags;
} TEnumPeripheralsAnswer ;

TEnumPeripheralsAnswer _DpaMessage. EnumPeripheralsAnswer ;

 2.7.2 Get peripheral information

Request

NADR PNUM PCMD HWPID

NADR PNUM 0x3F ?

The HWPID value is ignored at peripheral information command.

Response

NADR PNUM PCMD HWPID ErrN DpaValue 0 1 2 3

NADR PNUM 0xBF ? 0 ? PerTE PerT Par1 Par2

PerTE Extended peripheral characteristic
PerT Peripheral type. If the peripheral is not supported or enabled,
 then PerTx = PERIPHERAL_TYPE_DUMMY.
Par1 Optional peripheral specific information
Par2 Optional peripheral specific information

 2.7.2.1 Source code support

typedef struct
{
 uns8 PerTE;
 uns8 PerT;
 uns8 Par1;
 uns8 Par2;
} TPeripheralInfoAnswer ;

TPeripheralInfoAnswer _DpaMessage. TPeripheralInfoAnswer ;

 2.7.3 Get information for more peripherals

Returns the same information as Get peripheral information but for up to 14 peripherals of consecutive
indexes starting with the specified PCMD.

Request

NADR PNUM PCMD HWPID

NADR 0xFF Per ?

Per First peripheral from the list to get the information about

The HWPID value is ignored at peripheral information command.

Response

NADR PNUM PCMD HWPID ErrN DpaValue 0 1 2 3 é 4*(n-1)+0 4*(n-1)+1 4*(n-1)+2 4*(n-1)+3

 IQRF DPA

© 2013-2015 MICRORISC s.r.o. www.iqrf.org Tech_Guide_DPA_Framework150805 Page 17

NADR 0xFF RPer ? 0 ? PerTE1 PerT1 Par11 Par21 … PerTEn PerTn Par1n Par2n

RPer Same as Per at request but with most significant bit set to indicate response message
n Number of peripherals information was returned about.

If the peripheral at index x is not supported or enabled, then PerTx = PERIPHERAL_TYPE_DUMMY.
The response data is always right-trimmed to the last supported or enabled peripheral that can fit in
the data array i.e. the data never ends with one or more peripheral information with PerTx =
PERIPHERAL_TYPE_DUMMY.

 2.7.3.1 Source code support

TPeripheralInfoA nswer _DpaMessage.PeripheralInfoAnswers[MAX_PERIPHERALS_PER_BLOCK_INFO];

 3 Peripherals
This (the longest) chapter documents all available standard peripherals and their commands. Nested
chapters named Source code support show prepared C code types and variables to access the
peripheral command from the code. This is done typically at Custom DPA Handler code.

 3.1 Standard operations in general

Commands marked [sync] are executed after IQMESH routing is finished thus this event is
synchronized among all devices that handled the original DPA request. This applies to the DPA
request being sent using broadcast address.

Commands marked [comdown] wait for maximum 100 ms to flush output buffers of SPI/UART
Peripheral/Interface and then shuts it down. This is to prevent raising HW interrupts or to release OS
bufferCOM variable that has to be used internally. After the command is finished the object is
restarted.

 3.1.1 Writing to peripheral

Request

NADR PNUM PCMD HWPID 0 é n - 1

NADR PNUM PCMD ? PData0 … PDatan-1

n Data length

Response

NADR PNUM PCMD HWPID ErrN DpaValue

NADR PNUM PCMD ? 0 ?

PCMD Same as PCMD at request but with most significant bit set to indicate response

message.

 3.1.1.1 Source code support

uns8 _DpaMessage.Request.PData[DPA_MAX_DATA_LENGTH];

 3.1.2 Reading from peripheral

Request

NADR PNUM PCMD HWPID

NADR PNUM PCMD ?

Response

 IQRF DPA

© 2013-2015 MICRORISC s.r.o. www.iqrf.org Tech_Guide_DPA_Framework150805 Page 18

NADR PNUM PCMD HWPID ErrN DpaValue 0 é n - 1

NADR PNUM PCMD ? 0 ? PData0 … PDatan-1

PCMD Same as PCMD at request but with most significant bit set to indicate response

message.
n Data length

 3.1.2.1 Source code support

uns8 _DpaMessage.Response.PData[DPA_MAX_DATA_LENGTH];

 3.2 Coordinator

PNUM = 0x00

This peripheral is implemented at [C] and [CN] devices.

General note: bond state of the node is not synchronized between the node and coordinator. There
are separated request for node and coordinator concerning the bonding.

 3.2.1 Peripheral information

PerT PERIPHERAL_TYPE_IQMESH_COORDINATOR

PerTE PERIPHERAL_TYPE_EXTENDED_READ_WRITE
Par1 Maximum number of data (PData) bytes that can be sent in the DPA messages
Par2 Undocumented

 3.2.2 Get addressing information

Returns basic network information.

Request

NADR PNUM PCMD HWPID

NADR 0x00 0x00 ?

Response

NADR PNUM PCMD HWPID ErrN DpaValue 0 1

NADR 0x00 0x80 ? 0 ? DevNr DID

DevNr Number of bonded network nodes
DID Discovery ID of the network

 3.2.2.1 Source code support

typedef struct
{
 uns8 DevNr;
 uns8 DID;
} TPerCoordinatorAddrInfo_Response ;

TPerCoordinatorAddrInfo_Response _DpaMessage.PerCoordinatorAddrInfo_Response;

 3.2.3 Get discovered nodes

Returns a bit map of discovered nodes.

Same as Get bonded nodes but PCMD = 0x01.

 3.2.4 Get bonded nodes

Returns a bit map of bonded nodes.

 IQRF DPA

© 2013-2015 MICRORISC s.r.o. www.iqrf.org Tech_Guide_DPA_Framework150805 Page 19

Request

NADR PNUM PCMD HWPID

NADR 0x00 0x02 ?

Response

NADR PNUM PCMD HWPID ErrN DpaValue 0 é 31

NADR 0x00 0x82 ? 0 ? PData0 … PData31

PData0-31 Bit array indicating bonded nodes (addresses). Address 0 at bit0 of PData0, Address 1

at bit1 of PData0 etc.

 3.2.4.1 Source code support

uns8 _DpaMessage.Response.PData[DPA_MAX_DATA_LENGTH];

 3.2.5 Clear all bonds

Removes all nodes from the list of bonded nodes at coordinator memory.

Request

NADR PNUM PCMD HWPID

NADR 0x00 0x03 ?

Response: General response to writing request with STATUS_NO_ERROR Error code

 3.2.6 Bond node

Bonds a new node by coordinator. There is a maximum approx. 10 s blocking delay when this function
is called.

Request

NADR PNUM PCMD HWPID 0 1

NADR 0x00 0x04 ? ReqAddr Bonding mask

ReqAddr A requested address for the bonded node. The address must not be used (bonded)

yet. If this parameter equals to 0, then 1
st
 free address is assigned to the node.

Bonding mask See IQRF OS User's and Reference guides (remote bonding, function
bondNewNode).

Response

BondAddr Address of the node newly bonded to the network
DevNr Number of bonded network nodes

 3.2.6.1 Source code support

typedef struct
{
 uns8 ReqAddr;
 uns8 BondingMask;
} TPerCoordinatorBondNode_Request ;

TPerCoordinatorBondNode_Request _DpaMessage. PerCoordinatorBondNode_Request ;

typedef struct

NADR PNUM PCMD HWPID ErrN DpaValue 0 1

NADR 0x00 0x84 ? 0 ? BondAddr DevNr

 IQRF DPA

© 2013-2015 MICRORISC s.r.o. www.iqrf.org Tech_Guide_DPA_Framework150805 Page 20

{
 uns8 BondAddr;
 uns8 DevNr;
} TPerCoordinatorBondNode_Response ;

TPerCoordinatorBondNode_Response _DpaMessage. PerCoordinatorBondNode_Response ;

 3.2.7 Remove bonded node

Removes already bonded node from the list of bonded nodes at coordinator memory.
Request

BondAddr Address of the node to remove the bond to

Response

NADR PNUM PCMD HWPID ErrN DpaValue 0

NADR 0x00 0x85 ? 0 ? DevNr

DevNr Number of bonded network nodes

 3.2.7.1 Source code support

typedef struct
{
 uns8 BondAddr;
} TPerCoordinatorRemoveRebondBond_Request ;

TPerCoordinatorRemoveRebondBond_Request

_DpaMessage. PerCoordinatorRemoveRebondBond_Request ;

typedef struct
{
 uns8 DevNr;
} TPerCoordinatorRemoveRebondBond_Response;

TPerCoordinatorRemoveRebondBond_Response
 _DpaMessage. PerCoordinatorRemoveRebondBond_Response;

 3.2.8 Re-bond node

Puts specified node back to the list of boded nodes in the coordinator memory.

Request

NADR PNUM PCMD HWPID 0

NADR 0x00 0x06 ? BondAddr

BondAddr Address of the node to be re-bonded

Response

NADR PNUM PCMD HWPID ErrN DpaValue 0

NADR 0x00 0x86 ? 0 ? DevNr

DevNr Number of bonded network nodes

NADR PNUM PCMD HWPID 0

NADR 0x00 0x05 ? BondAddr

 IQRF DPA

© 2013-2015 MICRORISC s.r.o. www.iqrf.org Tech_Guide_DPA_Framework150805 Page 21

 3.2.8.1 Source code support

typedef struct
{
 uns8 BondAddr;
} TPerCoordinatorRemoveRebondBond_Request ;

TPerCoordinatorRemoveRebondBond_Request

_DpaMessage. PerCoordinatorRemoveRebondBond_Request ;

typedef struct
{
 uns8 DevNr;
} TPerCoordinatorRemoveRebondBond_Response;

TPerCoordinatorRemoveRebondBond_Response

_DpaMessage. PerCoordinatorRemoveRebondBond_Response;

 3.2.9 Discovery

[comdown] Runs IQMESH discovery process. The time when the response is delivered depends
highly on the number of network devices, the network topology and RF mode, thus it is not
predictable. It can take from a few seconds to many minutes.

Request

NADR PNUM PCMD HWPID 0 1

NADR 0x00 0x07 ? TxPower MaxAddr

TxPower TX Power used for discovery.
MaxAddr Nonzero value specifies maximum node address to be part of the discovery process.

This feature allows splitting all node devices into two parts: [1] devices having address
from 1 to MaxAddr will be part of the discovery process thus they become routers, [2]
devices having address from MaxAddr+1 to 239 will not be routers. See IQRF OS
documentation for more information.

 The value of this parameter is ignored at demo version. A value 5 is always used
instead.

Response

NADR PNUM PCMD HWPID ErrN DpaValue 0

NADR 0x00 0x87 ? 0 ? DiscNr

DiscNr Number of discovered network nodes

 3.2.9.1 Source code support

typedef struct
{
 uns8 TxPower;
 uns8 MaxAddr;
} TPerCoordinatorDiscovery_Request ;

TPerCoordinatorDiscovery_Request _DpaMessage. PerCoordinatorDiscovery_Request ;

typedef struct
{
 uns8 DiscNr;
} TPerCoordinatorDiscovery_Response ;

TPerCoordinatorDiscovery_Response _DpaMessage. PerCoordinatorDiscovery_Response ;

 IQRF DPA

© 2013-2015 MICRORISC s.r.o. www.iqrf.org Tech_Guide_DPA_Framework150805 Page 22

 3.2.10 Set DPA Param

Sets DPA Param. DPA Param (DPA Parameter) is one byte parameter stored at the coordinator RAM
that configures network behavior. Default value 0x00 is set upon coordinator reset. Default value can
be changed using Autoexec feature.

Bit Description

0-1

Specifies which type of DPA Value is returned inside every DPA response or DPA
confirmation messages:

 00 lastRSSI: IQRF OS variable (*). In case of {C} device the value is 0 until some RF
packet is received.

 01 voltage: Value returned by getSupplyVoltage() IQRF OS call (*)

 10 system:

 bit 0: Equals to bit DSMactivated.

 bits 1-6: Reserved

 bit 7: (*)

 11 user specified DPA Value. See UserDpaValue.

2

If 1, it allows easily diagnosing the network behavior based on following LED activities.
Please note that this feature might collide with LED peripheral when used simultaneously
giving undesirable effects.

 Red LED flashes When Node or Coordinator receives network message.

 Green LED flashes When Coordinator sends network message or when Node routes
network message.

3
If 1, then instead of using ideal timeslot length a long fixed 200 ms timeslot is used. It allows
easier tracking of network behavior.

4-7 Reserved

(*) The highest 7th bit indicates, that the node, that returned the DPA response, provided a remote
pre-bonding to another node. Then Node peripheral commands can be used to find out its module ID
and proceed with node authorization using Coordinator peripheral.

DPA Param is transparently sent with every DPA message from the coordinator and thus it controls
the network behavior “on the fly”. It is not permanently stored at nodes.

Request

NADR PNUM PCMD HWPID 0

NADR 0x00 0x08 ? DPA Param

DPA Param DPA Param to set.

Response

NADR PNUM PCMD HWPID ErrN DpaValue 0

NADR 0x00 0x88 ? 0 ? DPA Param

DPA Param Previous value

 3.2.10.1 Source code support

typedef struct
{
 uns8 DpaParam;
} TPerCoordinatorSetDpaParams_Request_Response ;

TPerCoordinatorSetDpaParams_Request_Response

_DpaMessage. PerCoordinatorSetDpaParams_Request_Response ;

 IQRF DPA

© 2013-2015 MICRORISC s.r.o. www.iqrf.org Tech_Guide_DPA_Framework150805 Page 23

 3.2.11 Set Hops

Allows specifying fixed number of hops used to send the DPA request/response or to specify an
optimization algorithm to compute number of hops. The default value 0xFF is set upon device reset.

Request

NADR PNUM PCMD HWPID 0 1

NADR 0x00 0x09 ? Request Hops Response Hops

Hops values:
0x00, 0xFF: See a description of the parameter of function optimizeHops() in the IQRF

documentation. 0x00 does not make sense for Response Hops parameter.
0x01 – 0xEF: Sets number of hops to the value Request/ResponseHops - 1.

Result of Discovery data command can be used to find out an optimal number of hops
based on destination node logical address or virtual routing number respectively.

Response

NADR PNUM PCMD HWPID ErrN DpaValue 0 1

NADR 0x00 0x89 ? 0 ? Request Hops Response Hops

Request/Response Hops Previous values

 3.2.11.1 Source code support

typedef struct
{
 uns8 RequestHops;
 uns8 ResponseHops;
} TPerCoordinatorSetHops_Request_Response ;

TPerCoordinatorSetHops_Request_Response

_DpaMessage. PerCoordinatorSetHops_Request_Response ;

 3.2.12 Discovery data

Allows reading of coordinator internal discovery data. Discovery data can be used for instance for
IQMESH network visualization and traffic optimization. Discovery data structure is documented at
IQRF OS Operating System User's Guide.

Request

NADR PNUM PCMD HWPID 0

NADR 0x00 0x0A ? Addr

Addr Address of the discovery data to read. Discovery data is actually read from address 16

* Address from the external EEPROM.

Response

NADR PNUM PCMD HWPID ErrN DpaValue 0 é 15

NADR 0x00 0x8A ? 0 ? Discovery data

DiscoveryData Discovery data read from the coordinator private external EEPROM storage

 3.2.12.1 Source code support

typedef struct
{
 uns8 Addr;

 IQRF DPA

© 2013-2015 MICRORISC s.r.o. www.iqrf.org Tech_Guide_DPA_Framework150805 Page 24

} TPerCoordinatorDiscoveryData_Request ;

TPerCoordinatorDiscoveryData_Request _DpaMessage. PerCoordinatorDiscoveryData_Request ;

typedef struct
{
 uns8 DiscoveryData[16];
} TPerCoordinatorDiscoveryData_Response ;

TPerCoordinatorDiscoveryData_Response

_DpaMessage. PerCoordinatorDiscoveryData_Response ;

 3.2.13 Backup

Allows reading coordinator network information data that can be then restored to another coordinator
in order to make a clone of the original coordinator. Backup data structure is not public.

Request

NADR PNUM PCMD HWPID 0

NADR 0x00 0x0B ? Index

Index Index of the block of data

Response

NADR PNUM PCMD HWPID ErrN DpaValue 0 é 18

NADR 0x00 0x8B ? 0 ? Network data

Network data One block of the coordinator network info data

To read all data blocks just start with Index = 0 and execute Backup request. Then store received data
block from the response. The 1

st
 byte of the read data specifies how many data blocks remains to be

read. So, if this byte is not 0 just increment Index (0, 1, …) and execute another Backup request.

 3.2.13.1 Source code support

typedef struct
{
 uns8 Index;
} TPerCoordinatorNodeBackup_Request ;

TPerCoordinatorNodeBackup_Request _DpaMessage. PerCoordinatorNodeBackup_Request ;

typedef struct
{
 uns8 NetworkData[19];
} TPerCoordinatorNodeBackup_Response ;

TPerCoordinatorNodeBackup_Response _DpaMessage. PerCoordinatorNodeBackup_Response ;

 3.2.14 Restore

Allows writing previously backed up coordinator network data to the same or another coordinator
device. To execute the full restore all data blocks (in any order) obtained by Backup commands must
be written to the device.

The following conditions must be met to make the coordinator backup fully functional:

¶ Module IDs of the backed up coordinator and coordinator to restore to are identical.

¶ No network traffic comes from/to restored coordinator during restore process.

¶ Coordinator device is reset after whole restore is finished.

¶ It is recommended to run Run discovery command before network is used after restore
because of possible RF differences between new and previous coordinator device HW.

 IQRF DPA

© 2013-2015 MICRORISC s.r.o. www.iqrf.org Tech_Guide_DPA_Framework150805 Page 25

Request

Network data One block of the coordinator network info data previously obtained by Backup
command.

Response: General response to writing request with STATUS_NO_ERROR Error code

 3.2.14.1 Source code support

typedef struct
{
 uns8 NetworkData[19];
} TPerCoordinatorNodeRestore_Request ;

TPerCoordinatorNodeRestore_Request _DpaMessage. PerCoordinatorNodeRestore_Request ;

 3.2.15 Authorize bond

Authorizes previously remotely pre-bonded node. This gives the node the final network address. See
IQRF documentation for more information about remote bonding concept.

Request

NADR PNUM PCMD HWPID 0 1 2

NADR 0x00 0x0D ? ReqAddr Module ID

ReqAddr See Bond node request
Module ID Module ID (the lowest 2 bytes out of 4 bytes) of the node to be authorized. Module ID

is obtained by calling Read remotely bonded module ID.

Response: see response of Bond node command (except PCMD is 0x8D).

 3.2.15.1 Source code support

typedef struct
{
 uns8 ReqAddr;
 uns16 MID;
} TPerCoordinatorAuthorizeBond_Request ;

TPerCoordinatorAuthorizeBond_Request _DpaMessage. PerCoordinatorAuthorizeBond_Request;

typedef struct
{
 uns8 BondAddr;
 uns8 DevNr;
} TPerCoordinatorAuthorizeBond_Response ;

TPerCoordinatorAuthorizeBond_Response

_DpaMessage. PerCoordinatorAuthorizeBond_Response ;

 3.2.16 Bridge

[sync] This command supported by [CN] devices allows sending and receiving DPA requests
and responses to and from the nested networks, respectively. The command must not be a part of the
Batch, nor Autoexec. To bridge DPA request and response among more than one nested sub
networks one bridge command can be nested inside another bridge command (see example #2
below). The command increases NetDepth by 1 as the request travels among networks. NetDepth is
decreased by 1 as the response travels back. Request to the nested network is sent after both request
routing and sending of the 1

st
 response at the current network is finished.

NADR PNUM PCMD HWPID 0 é 18

NADR 0x00 0x0C ? Network data

 IQRF DPA

© 2013-2015 MICRORISC s.r.o. www.iqrf.org Tech_Guide_DPA_Framework150805 Page 26

If subNADR parameter is incorrect (the addressed is not bonded and it is not a broadcast [0xFF] or
temporary address [0xFE] or the address is out of the demo version range) the command returns
ERROR_NADR.

Request

NADR PNUM PCMD HWPID 0 1 2 3 4 5 6 é n

NADR 0x00 0x0E ? subNADR subPNUM subPCMD subHWPID subPData

subNADR Network address of the device in the sub network controlled by the Coordinator of the

[CN] device to send the DPA request to.
subPNUM Peripheral number to send the DPA request to.
subPCMD DPA request command.
subHWPID DPA request HW profile ID.
subPData Optional DPA request data depending on the actual subPCMD used.

Bridge Confirmation

This is the 1

st
 “immediate” response to the request itself. Although it is a response it is called bridge

confirmation, because it contains the same data the as the common DPA Confirmation.

NADR PNUM PCMD HWPID ErrN DpaValue 0 1 2

NADR 0x00 0x8E ? 0 ? Hops Timeslot length in 10 ms units Hops Response

Returned values have the same meaning as the corresponding fields of DPA Confirmation, but in this
case they represent values used to communicate with device(s) at nested network. The length of the
data is fixed (3 bytes) and so the length can be used to distinguish the 1

st
 response from the next

response(s).

Response

This is the 2

nd
 response that carries the actual response of the device that has been addressed at the

nested network.

NADR PNUM PCMD HWPID ErrN DpaValue 0 1 2 3 4 5 6 7 8 é n

NADR 0x00 0x8E ? 0 ? subNADR subPNUM subPCMD subHWPID subRespCode subDpaValue subPData

subNADR, subPNUM, subPCMD, subHWPID, etc. are response fields from the addressed node from
the nested network. There must be no other traffic in the participating networks in order to reliably
deliver all DPA responses back to the main coordinator. Also note that every response being bridged
from one network to the higher is longer by extra 8 bytes. It must be ensured that the PData length at
the very last response does not exceed the maximum allowed PData length.

Example 1

The following example sent from the main coordinator C0 pulses green LED at the node N2 at the 2

nd

nested network.

¶ DPA Request (C0 → N1 → N2)
NADR=0x0001, PNUM=0x00, PCMD=0x0E, HWPID=0xFFFF, PData={0x0002} (N2 NADR), {0x07} (LEDG PNUM),
{0x03} (Pulse LED PCMD),{0xFFFF} (N2 HWPID)

¶ Confirmation (from C0)

1st level network

Interface

2nd level network 3rd level network

N2C0 N3N1 C0C0

 IQRF DPA

© 2013-2015 MICRORISC s.r.o. www.iqrf.org Tech_Guide_DPA_Framework150805 Page 27

NADR=0x0001, PNUM=0x00, PCMD=0x0E, HWPID=0xFFFF, Data={0xFF}
(Confirmation)

, {0x07}
(DPA Value)

,
{0x01,0x03,0x01}

(Hops, Timeslot length, Hops response)

¶ DPA Bridge Confirmation (N1 → C0)
NADR=0x0001, PNUM=0x00, PCMD=0x8E, HWPID=0x????, PData={0x00} (N1 No error), {0x??} (N1 DPA Value),
{0x02} (N1→N2 Hops), {0x03} (N1→N2 Timeslot length), {0x02} (N2→N1 Hops Response)

¶ DPA Response (N2 → N1 → C0)
NADR=0x0001, PNUM=0x00, PCMD=0x8E, HWPID=0x????, PData={0x00} (N1 No error), {0x??} (N1 DPA Value),
{0x0002} (N2 NADR), {0x07} (LEDG PNUM), {0x83} (Pulse LED PCMD), {0x????} (N2 HWPID), {0x00} (N2 No error),
{0x??} (N2 DPA Value)

Example 2

The following more complex example sent from the main coordinator C0 reads 5 bytes from address 4
of RAM peripheral at the node N3 at the 3

rd
 nested network from the previous example.

¶ DPA Request (C0 → N1 → N2 → N3)
NADR=0x0001, PNUM=0x00, PCMD=0x0E, HWPID=0xFFFF, PData={0x0002} (N2 NADR), {0x00} (Coordinator

PNUM),{0x0E} (Bridge PCMD),{0xFFFF} (N2 HWPID), [{0x0003} (N3 NADR), { 0x05} (RAM PNUM), {0x0 0} (Read RAM

PCMD),{0xFFFF} (N3 HWPID) , {0x04} (RAM address), {0x05} (Number of bytes to read)]

¶ Confirmation (from C0)
NADR=0x0001, PNUM=0x00, PCMD=0x0E, HWPID=0xFFFF, Data={0xFF}

(Confirmation)
, {0x07}

(DPA Value)
,

{0x01,0x03,0x01}
(Hops, Timeslot length, Hops response)

¶ DPA Bridge Confirmation (N1 → C0)
NADR=0x0001, PNUM=0x00, PCMD=0x8E, HWPID=0x????, PData={0x00} (N1 No error), {0x??} (N1 DPA Value),
{0x02} (N1→N2 Hops), {0x03} (N1→N2 Timeslot length), {0x02} (N2→N1 Hops Response)

¶ DPA Response #1 (N2 → N1 → C0)
NADR=0x0001, PNUM=0x00, PCMD=0x8E, HWPID=0x????, PData={0x00} (N1 No error), {0x??} (N1 DPA Value),
{0x0002} (N2 NADR), {0x00} (Coordinator PNUM), {0x8E} (Bridge PCMD), { 0x????} (N2 HWPID), Data={0x00} (N2 No error),
{0x??} (N2 DPA Value), {0x03} (N2→N3 Hops), {0x03} (N2→N3 Timeslot length), {0x03} (N3→N2 Hops Response)

¶ DPA Response #2 (N3 → N2 → N1 → C0)
NADR=0x0001, PNUM=0x00, PCMD=0x8E, HWPID=0x????, PData={0x00} (N1 No error), {0x??} (N1 DPA Value),
{0x0002} (N2 NADR), {0x00} (Coordinator PNUM), {0x8E} (Bridge PCMD),{ 0x????} (N2 HWPID), Data={0x00} (N2 No error),
{0x??} (N2 DPA Value), [{0x0003} (N3 NADR), {0x05} (RAM PNUM), {0x 80} (Read RAM PCMD),{ 0x????} (N3 HWPID),
Data={0x00} (N3 No error), {0x??} (N3 DPA Value), {0x??, 0x??, 0x??, 0x??, 0x??} (5 read bytes)]

 3.2.16.1 Source code support

typedef struct
{
 TDpaIFaceHeader subHeader;
 uns8 subPData[DPA_MAX_DATA_LENGTH - sizeof (TDpaIFaceHeader)];
} TPerCoordinatorBridge_Request ;

TPerCoordinatorBridge_Request _DpaMessage. PerCoordinatorBridge_Request ;

typedef struct
{
 TDpaIFaceHeader subHeader;
 uns8 subRespCode;
 uns8 subDpaValue;
 uns8 subPData[DPA_MAX_DATA_LENGTH - sizeof (TDpaIFaceHeader) - 2 * sizeof (uns8)];
} TPerCoordinatorBridge_Response ;

TPerCoordinatorBridge_Response _DpaMessage. PerCoordinatorBridge_Response ;

 IQRF DPA

© 2013-2015 MICRORISC s.r.o. www.iqrf.org Tech_Guide_DPA_Framework150805 Page 28

 3.2.17 Enable remote bonding

Implemented at [C] devices. Has the same behavior as Enable remote bonding except PNUM = 0x00
and PCMD = 0x11.

 3.2.18 Read remotely bonded module ID

Implemented at [C] devices. Has the same behavior as Read remotely bonded module ID except
PNUM = 0x00 and PCMD = 0x0F.

 3.2.19 Clear remotely bonded module ID

Implemented at [C] devices. Has the same behavior as Clear remotely bonded module ID except
PNUM = 0x00 and PCMD = 0x10.

 3.3 Node

PNUM = 0x01

This peripheral is implemented at [N] and [CN] devices.

General note: Bond state of the node is not synchronized between the node and coordinator. There
are separated requests for node and coordinator concerning the bonding.

 3.3.1 Peripheral information

PerT PERIPHERAL_TYPE_IQMESH_NODE

PerTE PERIPHERAL_TYPE_EXTENDED_READ_WRITE
Par1 Maximum number of data (PData) bytes that can be sent in the DPA messages
Par2 Undocumented

 3.3.2 Read

Returns IQMESH specific node information.

Request

NADR PNUM PCMD HWPID

NADR 0x01 0x00 ?

Response

NADR PNUM PCMD HWPID ErrN DpaValue 0 é 10 11

NADR 0x01 0x80 ? 0 ? ntwADDR … ntwCFG Flags

ntwADDR … ntwCFG Block of all ntw* IQRF OS variables (ntwADDR, ntwVRN, ntwZIN, ntwDID,

ntwPVRN, ntwUSERADDRESS, ntwID, ntwVRNFNZ, ntwCFG) in the same
order and size as located in the IQRF OS memory. See IQRF OS
documentation for more information.

Flags bit 0 Indicates whether the Node device is bonded.
 bit 1-7 Reserved

 3.3.2.1 Source code support

typedef struct
{
 uns8 ntwADDR;
 uns8 ntwVRN;
 uns8 ntwZIN;
 uns8 ntwDID;
 uns8 ntwPVRN;
 uns16 ntwUSERADDRESS;
 uns16 ntwID;
 uns8 ntwVRNFNZ;
 uns8 ntwCFG;

 IQRF DPA

© 2013-2015 MICRORISC s.r.o. www.iqrf.org Tech_Guide_DPA_Framework150805 Page 29

 uns8 Flags;
} TPerNodeRead_Response;

TPerNodeRead_Response _DpaMessage. PerNodeRead_Response;

 3.3.3 Remove bond

[sync] The bond is marked as unbonded (removed from network) using removeBond() IQRF call.
Bonding state of the node at the coordinator side is not effected at all.

Request

NADR PNUM PCMD HWPID

NADR 0x01 0x01 ?

Response

General response to writing request with STATUS_NO_ERROR Error code.

 3.3.4 Enable remote bonding

Puts node into a mode that provides a remote bonding of maximum one new node. Remote bonding
gives the new node temporary network address (0xFE). This process is called pre-bonding. A final
logical network address is provided to the node using Authorize bond command. Then the node can
be then discovered and its virtual routing number is assigned. See IQRF documentation for more
information about remote bonding concept.

Node stays in the remote bonding mode even if a new node was pre-bonded. Then it allows only to
the same node to be pre-bonded again, pre-bonding of other node is rejected. This gives possibility
the new node to try pre-bonding again in case when it did not receive pre-bonding confirmation after
the previous bonding requests. Also see bit ProvidesRemoteBonding.

Request

NADR PNUM PCMD HWPID 0 1 2 3

NADR 0x01 0x04 ? Bonding mask Control User Data

Bonding mask See IQRF OS User's and Reference guides (remote bonding, function

bondNewNodeRemote).
Control bit 0 Enables remote bonding mode. If enabled then previously bonded node

 module ID is forgotten.
 bit 1-7 Reserved
User Data Optional data that can be used at Reset Custom DPA Handler event.

Response

General response to writing request with STATUS_NO_ERROR Error code.

 3.3.4.1 Source code support

typedef struct
{
 uns8 BondingMask;
 uns8 Control;
 uns16 UserData;
} TPerCoordinatorNodeEnableRemoteBonding_Request ;

TPerCoordinatorNodeEnableRemoteBonding_Request

_DpaMessage. PerCoordinatorNodeEnableRemoteBonding_Request ;

 IQRF DPA

© 2013-2015 MICRORISC s.r.o. www.iqrf.org Tech_Guide_DPA_Framework150805 Page 30

 3.3.5 Read remotely bonded module ID

This command returns module ID of the remotely pre-bonded node. If no node was pre-bonded then
the command returns ERROR_FAIL. Non-user DPA Values also indicate if any node was pre-bonded.
See Set DPA Param and RemoteBondingDone.

Request

NADR PNUM PCMD HWPID

NADR 0x01 0x02 ?

Response

NADR PNUM PCMD HWPID ErrN DpaValue 0 1 2 3 4 5

NADR 0x01 0x82 ? 0 ? Module ID User Data

Module ID Module ID of the remotely pre-bonded node. Bytes at position 0 and 1 can be used for

bonding authorization later. See Authorize bond.
User Data Optional bonding user data specified at Reset Custom DPA Handler event.

 3.3.5.1 Source code support

typedef struct
{
 uns8 MID[4];
 uns16 UserData;
} TPerCoordinatorNodeReadRemotelyBondedMID_Response ;

TPerCoordinatorNodeReadRemotelyBondedMID_Response

_DpaMessage. PerCoordinatorNodeReadRemotelyBondedMID_Response ;

 3.3.6 Clear remotely bonded module ID

This call makes node to forget module ID of the node that was previously remotely pre-bonded. After
calling this command calling of Read remotely bonded module ID fails. This command does not affect
remote bonding mode enable/disable state.

Request

NADR PNUM PCMD HWPID

NADR 0x01 0x03 ?

Response

General response to writing request with STATUS_NO_ERROR Error code.

 3.3.7 Remove bond address

[sync] The node stays in the IQMESH network (it is not unbonded) but a temporary address 0xFE is
assigned to it. This allows to address it (them) or to authorize it later by AuthorizeBond. It is highly
recommended to read the device's Module ID before removing bond address to be able to authorize it
later.

Request

Response

General response to writing request with STATUS_NO_ERROR Error code.

NADR PNUM PCMD HWPID

NADR 0x01 0x05 ?

 IQRF DPA

© 2013-2015 MICRORISC s.r.o. www.iqrf.org Tech_Guide_DPA_Framework150805 Page 31

 3.3.8 Backup

Same as coordinator Backup except PNUM = 0x01 and PCMD = 0x06.

 3.3.9 Restore

Same as coordinator Restore except PNUM = 0x01 and PCMD = 0x07.

 3.4 OS

PNUM = 0x02

 3.4.1 Peripheral information

PerT PERIPHERAL_TYPE_OS
PerTE PERIPHERAL_TYPE_EXTENDED_READ_WRITE
Par1 Undocumented
Par2 Undocumented

 3.4.2 Read

Returns some useful system information about the node.

Request

NADR PNUM PCMD HWPID

NADR 0x02 0x00 ?

Response

NADR PNUM PCMD HWPID ErrN DpaValue 0 é 3 4 5 6 é 7 8 9 10

NADR 0x02 0x80 ? 0 ? ModuleID OSVersion TR&McuType OsBuild Rssi SupplyVoltage Flags

ModuleID,
OSVersion,
TR&McuType,
OsBuild See moduleInfo() at IQRF OS Reference Guide.
Rssi See lastRSSI at IQRF Reference Guide. In case of {C} device the value is 0

until some RF packet is received.
SupplyVoltage See getSupplyVoltage() at IQRF Reference Guide.
Flags Flags.0 is 1 if there is an insufficient OsBuild for the used DPA version.
 Flags.1 is 0 if SPI interface is supported; 1 if UART interface is supported.
 Flags.2 is 1 if Custom DPA Handler was detected.
 Flags.3-7 are reserved.

 3.4.2.1 Source code support

typedef struct
{
 uns8 ModuleId[4];
 uns8 OsVersion;
 uns8 McuType;
 uns16 OsBuild;
 uns8 Rssi;
 uns8 SupplyVoltage;
 uns8 Flags;
} TPerOSRead_Response;

TPerOSRead_Response _DpaMessage. PerOSRead_Response;

 3.4.3 Reset

[sync] [comdown] Forces (DC)TR transceiver module to carry out reset.

Request

 IQRF DPA

© 2013-2015 MICRORISC s.r.o. www.iqrf.org Tech_Guide_DPA_Framework150805 Page 32

Response

General response to writing request with STATUS_NO_ERROR Error code.

 3.4.4 Restart

[sync] [comdown] Forces (DC)TR transceiver module to restart. It is similar to reset (the device
starts, RAM and global variables are cleared) except MCU is not reset from the HW point of view
(MCU peripherals are not initialized) and RFPGM on reset (when it is enabled) is always skipped.

Request

Response

General response to writing request with STATUS_NO_ERROR Error code.

 3.4.5 Read HWP configuration

Reads a raw HWP configuration memory. Bit values for Coordinator (bit 0) and Node (bit 1) peripheral
stored at HWP configuration are set the same way as at Peripheral enumeration.

Request

NADR PNUM PCMD HWPID

NADR 0x02 0x02 ?

Response

NADR PNUM PCMD HWPID ErrN DpaValue 0 1 é 31 32 é n

NADR 0x02 0x82 ? 0 ? Checksum Configuration Undocumented

Checksum Checksum of the Configuration part.
Configuration Content the configuration memory block from address 0x01 to 0x1F.

This command returns all bytes both from Checksum and Configuration sections being XORed by byte
value 0x34. The Checksum byte XORed with all Configuration bytes gives 0x5F.

 3.4.5.1 Source code support

typedef struct
{
 uns8 Checksum;
 uns8 Configuration[31];
 uns8 Undocumented[2];
} TPerOSReadCfg_Response;

TPerOSReadCfg_Response _DpaMessage. PerOSReadCfg_Response;

 3.4.6 Write HWP configuration

Writes HWP configuration memory. It is a programmer's responsibility to prepare correct configuration
block including checksum byte. This command is for advanced users only.

Please note that the device should be restarted for all configuration changes to take effect. See HWP
configuration for details.

NADR PNUM PCMD HWPID

NADR 0x02 0x01 ?

NADR PNUM PCMD HWPID

NADR 0x02 0x08 ?

 IQRF DPA

© 2013-2015 MICRORISC s.r.o. www.iqrf.org Tech_Guide_DPA_Framework150805 Page 33

Request

NADR PNUM PCMD HWPID ErrN DpaValue 0 1 é 31 32

NADR 0x02 0x0F ? 0 ? Checksum Configuration Undocumented

Checksum Checksum of the Configuration part. The Checksum byte XORed with all

Configuration bytes gives 0x5F.
Configuration Content the configuration memory block from address 0x01 to 0x1F.
Undocumented Must equal to the 33

rd
 (index 32) undocumented data byte read by Read

HWP configuration.

Response

General response to writing request with STATUS_NO_ERROR Error code.

Example

Following example shows writing RF output power value to the configuration in the Custom DPA
Handler code.

// Read configuration
_PNUM = PNUM_OS;
_PCMD = CMD_OS_READ_CFG;
_DpaDataLength = 0;
DpaApiLocalRequest();

// Decode configuration
FSR0 = _DpaMessage.Response.PData + sizeof (_DpaMessage.PerOSWriteCfg_Request.Checksum
) + sizeof (_DpaMessage.PerOSWriteCfg_Request.Configuration);
do
{
 setINDF0(* -- FSR0 ^ 0x34);
} while (FSR0.low8 != (_DpaMessage.Response.PData & 0xff));

// Update checksum
_DpaMessage.PerOSWriteCfg_Request.Checksum ^=
_DpaMessage.PerOSWriteCfg_Request.Configuration [CFGIND_TXPOWER -
sizeof (_DpaMessage.PerOSWriteCfg_Request.Checksum)] ^ txPowerToSet;
// Update TX power
_DpaMessage.PerOSWriteCfg_Request.Configuration [CFGIND_TXPOWER -
sizeof (_DpaMessage.PerOSWriteCfg_Request.Checksum)] = txPowerToSet;

// Write configuration
_PCMD = CMD_OS_WRITE_CFG;
_DpaDataLength = sizeof (TPerOSWriteCfg_Request);
DpaApiLocalRequest();

 3.4.6.1 Source code support

typedef struct
{
 uns8 Checksum;
 uns8 Configuration[31];
 uns8 Undocumented[1];
} TPerOSWriteCfg_Request ;

TPerOSWriteCfg_Request _DpaMessage. PerOSWriteCfg_Request ;

 3.4.7 Run RFPGM

[sync] [comdown] Puts device into RFPGM mode configured at HWP Configuration. The device
is reset when RFPGM process is finished. RFPGM runs at same channels (configured at HWP
configuration) the network is using.

 IQRF DPA

© 2013-2015 MICRORISC s.r.o. www.iqrf.org Tech_Guide_DPA_Framework150805 Page 34

Request

NADR PNUM PCMD HWPID

NADR 0x02 0x03 ?

Response

General response to writing request with STATUS_NO_ERROR Error code.

 3.4.8 Sleep

Puts device into sleep (power saving) mode.

[sync] [comdown] This command is implemented at the [N] device only.

(In)accuracy of the real sleep time depends on the PIC LFINTOSC oscillator that runs watchdog timer.
Oscillator frequency is mainly influenced by the device supply voltage and temperature volatility. See
PIC MCU datasheet for more details.

If the interface is used then it is disabled before going to sleep and enabled after device wakes up.

Before going to sleep both SPI and UART DPA peripherals or DPA interfaces are automatically shut
down and later restarted when device wakes up. If Custom DPA Handler code uses SPI or I2C MCU
peripherals in non-DPA way then events BeforeSleep and AfterSleep must be used to disable and
enable them around the sleep.

Request

NADR PNUM PCMD HWPID 0 1 2

NADR 0x02 0x04 ? Time Control

Time Sleep time in 2.097 s (i.e. 2048 * 1.024 ms) units. 0 specifies endless sleep

(except Control.bit1 is set to run calibration process without performing sleep).
Maximum sleep time is 38 hours 10 minutes 38.95 seconds.

Control • bit 0 Wake up on PORTB.4 pin negative edge change. See iqrfSleep() IQRF OS

function for more information.
 • bit 1 Runs calibration process before going to sleep. Calibration takes

approximately 132 ms or 16 ms at (DC)TR-5x or (DC)TR-7x respectively and
this time is subtracted from the requested sleep time. Calibration time
deviation may produce an absolute sleep time error at short sleep times. But it
is worth to run the calibration always before a longer sleep because the
calibration time deviation then accounts for a very small total relative error.
The calibration is always run before a first sleep with nonzero Time after the
module reset if calibration was not already initiated by Time=0 and
Control.bit1=1.

 • bit 2 If set, then if the device wakes up after the sleep period, a green LED once
shortly flashes. It is useful for diagnostic purposes.

 • bit 3 Wake up on PORTB.4 pin positive edge change. See iqrfSleep() IQRF OS
function for more information.

 • bit 4-7 Reserved.

Response

General response to writing request with STATUS_NO_ERROR Error code.

 3.4.8.1 Source code support

typedef struct
{
 uns16 Time;
 uns8 Control;

 IQRF DPA

© 2013-2015 MICRORISC s.r.o. www.iqrf.org Tech_Guide_DPA_Framework150805 Page 35

} TPerOSSleep_Request;

TPerOSSleep_Request _DpaMessage.PerOSSleep_Request ;

 3.4.9 Batch

[sync] Batch command allows executing more individual DPA requests within one original DPA
request. Both sender and addressee addresses of each embedded request equal to the
corresponding addresses of the original Batch DPA request. It is not allowed to embed Batch
command itself within series of individual DPA requests. Using neither Run discovery nor Bridge are
not allowed inside batch command list.

Request

NADR PNUM PCMD HWPID 0 é n

NADR 0x02 0x05 ? DPA Requests 0

DPA Requests Contains more DPA requests to be executed. The format at which the DPA

requests are stored is same as the format of Autoexec DPA requests. See
Autoexec for more information.

Example

The following example runs simple broadcast set of 5 DPA requests. It switches on red LED at
devices with HW profile ID 0x1234 or green LED at devices with HW profile ID 0x5678 respectively,
then waits for 200 ms (using I/O peripheral) and finally switches the same LEDs off.

NADR=0x00FF, PNUM=0x02, PCMD=0x05, HWPID=0xFFFF, Data=
[1st command] {0x05 (length), 0x06 (PNUM=LEDR), 0x01 (PCMD=LED on), 0x1234 (HWPID)},
[2nd command] {0x05 (length), 0x07 (PNUM=LEDG), 0x01 (PCMD=LED on), 0x5678 (HWPID)},
[3rd command] {0x08 (length), 0x09 (PNUM=I/O), 0x01 (PCMD=Set),0xFFFF (HWPID),0xFF (Delay command),0x00C8 (200 ms)}
[4t h command] {0x05 (length), 0x06 (PNUM=LEDR), 0x00 (PCMD=LED off),0x1234 HWPID)},
[5th command] {0x05 (length), 0x07 (PNUM=LEDG), 0x00 (PCMD=LED off),0x5678 HWPID)},
{0x00 (end of batch)}

Response

General response to writing request with STATUS_NO_ERROR Error code.

 3.4.10 Set USEC

Sets value of User Security Code (USEC). USEC is used for an additional authorization to enter
maintenance DPA Service Mode.

Request

NADR PNUM PCMD HWPID 0 1

NADR 0x02 0x06 ? USEC

USEC USEC value. The initial value for a new device is 0xFFFF (65,535 decimal).

Response

General response to writing request with STATUS_NO_ERROR Error code.

 3.4.10.1 Source code support

typedef struct
{
 uns16 USEC;
} TPerOSSetUSEC_Request;

TPerOSSetUSEC_Request _DpaMessage. PerOSSetUSEC_Request;

 IQRF DPA

© 2013-2015 MICRORISC s.r.o. www.iqrf.org Tech_Guide_DPA_Framework150805 Page 36

 3.4.11 Set MID

Sets a unique device Module ID (MID). This can be useful for creating a backup HW of the coordinator
device (also see coordinator Backup and Restore). A special encrypted 24 byte long key obtained
from IQRF device manufacturer is needed. Nevertheless the very last 4 bytes equal to the current
MID, and the previous 4 bytes equal to the new MID to be set.

Request

NADR PNUM PCMD HWPID 0 é 23

NADR 0x02 0x07 ? Key

Key A special encrypted 24 byte long key obtained from IQRF device manufacturer.

Response

General response to writing request with STATUS_NO_ERROR Error code.

 3.4.11.1 Source code support

typedef struct
{
 uns8 Key[24];
} TPerOSSetMID_Request;

TPerOSSetMID_Request _DpaMessage. PerOSSetMID_Request;

 3.5 EEPROM

PNUM = 0x03

This peripheral controls internal MCU EEPROM memory.

 3.5.1 Peripheral information

PerT PERIPHERAL_TYPE_EEPROM
PerTE PERIPHERAL_TYPE_EXTENDED_READ_WRITE
Par1 Size in bytes. (In the current version of DPA equals to 192 at [N] device or 64 at [CN]

or [CN] devices.)
Par2 Maximum data block length. (In the current version of DPA equals to 32.)

Actual EEPROM address space starts at address 0x00 at [N] device or at 0x80 at [C] or [CN] devices.
There is a predefined symbol PERIPHERAL_EEPROM_START that equals to the actual starting
address.

 3.5.2 Read

Reads data from the memory.

Request

NADR PNUM PCMD HWPID 0 1

NADR 0x03 0x00 ? Address Len

Address Address to read data from
Len Length of the data in bytes

Response

NADR PNUM PCMD HWPID ErrN DpaValue 0 é n-1

NADR 0x03 0x80 ? 0 ? PData0 … PDatan-1

 IQRF DPA

© 2013-2015 MICRORISC s.r.o. www.iqrf.org Tech_Guide_DPA_Framework150805 Page 37

n Data length

 3.5.2.1 Source code support

typedef struct
{
 uns8 Address;

 union
 {
 struct
 {
 uns8 Length;
 } Read;
 } ReadWrite;
} TPerMemoryRequest;

TPerMemoryRequest _DpaMessage. MemoryRequest;

 3.5.3 Write

Writes data to the memory.

Request

NADR PNUM PCMD HWPID 0 1 é n+1

NADR 0x03 0x01 ? Address PData0 … PDatan-1

PData Actual data to be written to the memory
Address Address to write data to
n Data length

Response

General response to writing request with STATUS_NO_ERROR Error code.

 3.5.3.1 Source code support

typedef struct
{
 uns8 Address;

 union
 {

#define MEMORY_WRITE_REQUEST_OVERHEAD (sizeof (uns8))
 struct
 {
 uns8 PData[DPA_MAX_DATA_LENGTH - MEMORY_WRITE_REQUEST_OVERHEAD];
 } Write;

 } ReadWrite;
} TPerMemoryRequest;

TPerMemoryRequest _DpaMessage.MemoryRequest;

 3.6 EEEPROM

PNUM = 0x04

This peripheral controls external serial EEPROM memory. Please note that the end part of the
external EEPROM memory space can be used for Autoexec and/or IO Setup.

 3.6.1 Peripheral information

PerT PERIPHERAL_TYPE_BLOCK_EEPROM

 IQRF DPA

© 2013-2015 MICRORISC s.r.o. www.iqrf.org Tech_Guide_DPA_Framework150805 Page 38

PerTE PERIPHERAL_TYPE_EXTENDED_READ_WRITE
Par1 Memory size in blocks (see Par2) (In the current version of DPA equals to 128 at [N]

device or 16 at [C] or [CN] devices.)
Par2 Data block size (equals to 16)

Actual EEEPROM address space starts at address 0x0000 at [N] device or at 0x0700 at [C] or [CN]
devices. There is a predefined symbol PERIPHERAL_EEEPROM_START that equals to the actual
starting address.

At some devices (e.g. DCTR-7x) the physical size of the external EEPROM is bigger than the size of
the corresponding DPA peripheral. In this case the extra space is accessible using IQRF OS external
EEPROM functions from the code.

 3.6.2 Read & Write

See EEPROM with keeping these exceptions in mind:

¶ Address unit is not byte but (zero based) block number

¶ Length unit is one byte and the value must not be greater than the block size

 3.7 RAM

PNUM = 0x05

This peripheral controls block of internal MCU RAM memory. The address space of the peripheral
occupies the whole bank 12 of the MCU RAM and can be accessed by an array variable
PeripheralRam from Custom DPA Handler code.

 3.7.1.1 Source code support

#pragma rambank = 12
uns8 PeripheralRam[PERIPHERAL_RAM_LENGTH];

 3.7.2 Peripheral information

PerT PERIPHERAL_TYPE_RAM

PerTE PERIPHERAL_TYPE_EXTENDED_READ_WRITE
Par1 Size in bytes. (In the current version of DPA equals to 48.)
Par2 Maximum data block length. (In the current version of DPA equals to 48.)

 3.7.3 Read & Write

See EEPROM.

 3.8 SPI (Slave)

PNUM = 0x08

The peripheral is not available at the Coordinator [C] device. The peripheral is not available at [N] or
[CN] devices supporting UART interface too.

The usage of the peripheral is limited at LP mode because the device regularly sleeps in its main
receiving loop. The peripheral works only when device does not sleep or during a time defined by
ReadTimeout parameter of a Write & Read command. Please see details below.

 3.8.1 Peripheral information

PerT PERIPHERAL_TYPE_SPI

PerTE PERIPHERAL_TYPE_EXTENDED_READ_WRITE

Par1 Maximum data block length
Par2 Not used

 3.8.2 Write & Read

Writes and/or reads data to/from SPI peripheral. See UART Write & Read which uses the same read
& write logic except PNUM = 0x08 and PCMD = 0x00.

 IQRF DPA

© 2013-2015 MICRORISC s.r.o. www.iqrf.org Tech_Guide_DPA_Framework150805 Page 39

 3.9 LED

PNUM = 0x06 or 0x07 for standard red respectively green LED at IQRF (DC)TR module.

Please note that at LP mode the device regularly enters a sleep mode when waiting for a packet so
the LED is switched off. To keep LED on for some time use LED request together with IO Set request
with a delay. Both requests can be stored inside one Batch request so the packet will not be received
after the LED command.

 3.9.1 Peripheral information

PerT PERIPHERAL_TYPE_LED

PerTE PERIPHERAL_TYPE_EXTENDED_READ_WRITE
Par1 LED_COLOR_* (* specifies one of the predefined color constants)
Par2 Not used

 3.9.2 Set

Controls the state of the LED peripheral.

Request

NADR PNUM PCMD HWPID

NADR 0x06 or 0x07 OnOff ?

OnOff 0x01 to switch LED on, 0x00 to switch LED off

Response

General response to writing request with STATUS_NO_ERROR Error code.

 3.9.3 Get

Returns a state of the LED.

Request

NADR PNUM PCMD HWPID

NADR 0x06 or 0x07 0x02 ?

Response

NADR PNUM PCMD HWPID ErrN DpaValue 0

NADR 0x06 or 0x07 0x82 ? 0 ? OnOff

OnOff 0x01 when LED is on, 0x00 when LED is off

 3.9.4 Pulse

Generates one LED pulse using IQRF OS function pulseLEDx().

Request

NADR PNUM PCMD HWPID

NADR 0x06 or 0x07 3 ?

Response

General response to writing request with STATUS_NO_ERROR Error code.

 3.10 IO

PNUM = 0x09

 IQRF DPA

© 2013-2015 MICRORISC s.r.o. www.iqrf.org Tech_Guide_DPA_Framework150805 Page 40

This peripheral controls IO pins of the MCU. Please note that the pins used by an internal IQRF
(DC)TR module circuitry cannot be used and their control by this peripheral is blocked. See a
corresponding IQRF (DC)TR module datasheet for the IO pins that are available.

 3.10.1 Peripheral information

PerT PERIPHERAL_TYPE_IO
PerTE PERIPHERAL_TYPE_EXTENDED_READ_WRITE
Par1 Bit mask specifying supported MCU ports (b0=PORTA, b1=PORTB, …, b7=PORTH)
Par2 Not used

 3.10.2 Direction

This command sets the direction of the individual IO pins of the individual ports. Additionally the same
command can be used to setup weak pull-ups at the pins where available. See datasheet of the PIC
MCU for a description of IO ports.

Request

NADR PNUM PCMD HWPID 0 1 2 é n * 3 n * 3 + 1 n * 3 + 2

NADR 0x09 0x00 ? port0 mask0 value0 … portn maskn valuen

Port a. Specifies port to setup a direction to. 0x00=TRISA, 0x01=TRISB, …(predefined

symbols PNUM_IO_TRISx) or
b. Specifies port to setup a pull-up. 0x11=WPUB, 0x14=WPUE (predefined symbols
PNUM_IO_WPUx)

mask Masks pins of the port.
value a. Actual direction bits for the masked pins. 0=output, 1=input., … or
 b. Pull-up state. 0=disabled, 1=enabled.

Response

General response to writing request with STATUS_NO_ERROR Error code.

 3.10.2.1 Source code support

typedef struct
{
 uns8 Port;
 uns8 Mask;
 uns8 Value;
} TPerIOTriplet ;

typedef union
{
 TPerIOTriplet Triplets[DPA_MAX_DATA_LENGTH / sizeof (TPerIOTriplet)];
} TPerIoDirectionAndSet_Request ;

TPerIoDirectionAndSet_Request _DpaMessage. PerIoDirectionAndSet_Request ;

 3.10.3 Set

[sync] This command sets the output state of the IO pins. It also allows inserting an active waiting
delay between IO pins settings. This feature can be used to generate an arbitrary time defined signals
on the IO pins of the MCU. During the active waiting the device is blocked and any network traffic will
not be processed.

This command is executed after the DPA response is sent back to the device that sent the original
DPA IO Set request. Therefore if an invalid port is specified an error code is not returned inside DPA
response but the rest of the request execution is skipped.

Request

NADR PNUM PCMD HWPID 0 1 2 é n * 3 n * 3 + 1 n * 3 + 2

 IQRF DPA

© 2013-2015 MICRORISC s.r.o. www.iqrf.org Tech_Guide_DPA_Framework150805 Page 41

NADR 0x09 0x01 ? command0 … commandn

triple There are 2 types of 3 byte commands allowed:

a. Setting an output value
port Specifies port to setup an output state. 0=PORTA, 1=PORTB, … (predefined symbols

PNUM_IO_PORTx)
 mask Masks pins of the port to setup.
 value Actual output bit value for the masked pins.

b. Delay
0xFF Specifies a delay command (predefined symbol PNUM_IO_DELAY).

 delayL Lower byte of the 2 byte delay value, unit is 1 ms.
 delayH Higher byte of the 2 byte delay value, unit is 1 ms.

Response

General response to writing request with STATUS_NO_ERROR Error code.

Example 1

Setting of PORTA.0 and PORTC.2 as output, PORTC.3 as input.

¶ Request
NADR=0x0001, PNUM=0x09, PCMD=0x00, HWPID=0xFFFF, Data={0x00(PORTA), 0x01 (bit0=1),
0x00(bit0=output)} {0x02 (PORTC), 0x0C (bit2=1, bit3=1), 0x08 (bit2=output, bit3=input)}

¶ Response
NADR=0x0001, PNUM=0x09, PCMD=0x80, HWPID=0xABCD, Data={00}(No error), {0x07} (DPA Value)

Example 2

Setting of PORTA.0=1, PORTC.2=1, then wait for 300 ms, set PORTA.0=0.

¶ Request
NADR=0x0001, PNUM=0x09, PCMD=0x01, HWPID=0xFFFF, Data={0x00(PORTA), 0x01(bit0=1), 0x01 (bit0=1)}
{0x02 (PORTC), 0x04 (bit2=1), 0x04 (bit2=1)} {0xFF (delay), 0x2C (low byte of 300), 0x01 (high byte of 300)} {0x00 (PORTA),
0x01(bit0=1), 0x00 (bit0=0)}

¶ Response
NADR=0x0001, PNUM=0x09, PCMD=0x81, HWPID=0xABCD, Data={00}(No error), {0 x07} (DPA Value)

 3.10.3.1 Source code support

typedef struct
{
 uns8 Port;
 uns8 Mask;
 uns8 Value;
} TPerIOTriplet ;

typedef struct
{
 uns8 Header; // == PNUM_IO_DELAY
 uns16 Delay;
} TPerIODelay ;

typedef union
{
 TPerIOTriplet Triplets[DPA_MAX_DATA_LENGTH / sizeof (TPerIOTriplet)];
 TPerIODelay Delays[DPA_MAX_DATA_LENGTH / sizeof (TPerIODelay)];
} TPerIoDirectionAndSet_Request ;

TPerIoDirectionAndSet_Request _DpaMessage. PerIoDirectionAndSet_Request ;

 IQRF DPA

© 2013-2015 MICRORISC s.r.o. www.iqrf.org Tech_Guide_DPA_Framework150805 Page 42

 3.10.4 Get

This command is used to read the input state of all supported the MCU ports (PORTx).

Request

NADR PNUM PCMD HWPID

NADR 0x09 0x02 ?

Response

NADR PNUM PCMD HWPID ErrN DpaValue 0 é n

NADR 0x09 0x82 ? 0 ? Port data

Port data Array of bytes representing state of port PORTA, PORTB, …, ending with the last

supported MCU port.

 3.11 Thermometer

PNUM = 0x0A for standard on-board thermometer peripheral

 3.11.1 Peripheral information

PerT PERIPHERAL_TYPE_THERMOMETER
PerTE PERIPHERAL_TYPE_READ
Par1 Not used
Par2 Not used

 3.11.2 Read

Reads on-board thermometer sensor value.

Request

NADR PNUM PCMD HWPID

NADR 0x0A 0x00 ?

Response

NADR PNUM PCMD HWPID ErrN DpaValue 0 1 2

NADR 0x0A 0x80 ? 0 ? TempC Temp16

TempC Temperature in °C, integer part, not rounded.

See return value of getTemperature() IQRF OS function. If the temperature sensor is
not installed (see HWP Configuration) then the returned value is 0x80 = -128 °C.

Temp16 Complete 12 bit value of the temperature in 0.0625 °C (one sixteenth) units or 0.5 °C
at DCTR-5x or at DCTR-7x respectively.
See getTemperature() IQRF OS function. If the temperature sensor is not installed the
value is undefined.

 3.11.2.1 Source code support

typedef struct
{
 uns8 IntegerValue;
 uns16 SixteenthValue;
} TPerThermometerRead_Response;

TPerThermometerRead_Response _DpaMessage.PerThermometerRead_Response;

 IQRF DPA

© 2013-2015 MICRORISC s.r.o. www.iqrf.org Tech_Guide_DPA_Framework150805 Page 43

 3.12 PWM

PNUM = 0x0B for standard MCU PWM peripheral

The peripheral is available at Demo version, STD mode and at the [N] device only. Source code of the
demo version implementation of the PWM peripheral is available among custom DPA handler
examples.

 3.12.1 Peripheral information

PerT PERIPHERAL_TYPE_PWM
PerTE PERIPHERAL_TYPE_WRITE
Par1 Not used
Par2 Not used

 3.12.2 Set

Sets PWM parameters.

Request

NADR PNUM PCMD HWPID 0 1 2

NADR 0x0B 0x00 ? Prescaler Period Duty

Prescaler bit <1:0> codes four values for CCP6CON register:
 • 11 = prescaler is 64
 • 10 = prescaler is 16
 • 01 = prescaler is  4
 • 00 = prescaler is  1
 bit <5:4> codes two least significant bits of 10bit Duty cycle <1:0>
Period Sets the PR6 register for PWM period
Duty Eight most significant bits of 10bit duty cycle value <9:2>. It sets the register CPR6

When all 3 parameters equal to 0, PWM is stopped.

Response

General response to writing request with STATUS_NO_ERROR Error code.

Example 1

Set PWM for 1 kHz with 50% of duty cycle and prescaler 16:

¶ DPA request (master > slave)
NADR=0x0000, PNUM=0x0B, PCMD=0x00, HWPID=0xFFFF, Data={0x02,0x7d,0x40}

¶ DPA response (slave > master)
NADR=0x0000, PNUM=0x0B, PCMD=0x80, HWPID=0xABCD, Data={0x00} (No error)

Example 2

Set PWM for 1 kHz with 70% of duty cycle and prescaler 16:

Note: prescaler value is 0x02 = 0b00000010, but the duty cycle value is in this case 0x15E =
0b101011110, the bits<1:0> (0b101011110) are added into Prescaler value (0b00100010 = 0x22) to
bits <5:4> and the seven most significant bits (0b101011110) are written into Duty (0b1010111 =
0x57).

¶ DPA request (master > slave)
NADR=0x0000, PNUM=0x0B, PCMD=0x00, HWPID=0xFFFF, Data={0x22,0x7d,0x57}

¶ DPA response (slave > master)
NADR=0x0000, PNUM=0x0B, PCMD=0x80, HWPID=0xABCD, Data={0x00} (No error)

 IQRF DPA

© 2013-2015 MICRORISC s.r.o. www.iqrf.org Tech_Guide_DPA_Framework150805 Page 44

 3.12.2.1 Source code support

typedef struct
{
 uns8 Prescaler;
 uns8 Period;
 uns8 Duty;
} TPerPwmSet_Request;

TPerPwmSet_Request _DpaMessage.PerPwmSet_Request;

 3.13 UART

PNUM = 0x0C for standard UART peripheral

The peripheral is not available at the Coordinator [C]. The peripheral is not available at [N] or [CN]
devices supporting UART interface.

The usage of the peripheral is limited at LP mode because the device regularly sleeps in its main
receiving loop. The peripheral works only when device does not sleep or during a time defined by
ReadTimeout parameter of a Write & Read command. Please see details below.

 3.13.1 Peripheral information

PerT PERIPHERAL_TYPE_UART
PerTE PERIPHERAL_TYPE_READ_WRITE
Par1 Maximum data block length
Par2 Not used

 3.13.2 Open

This command opens UART peripheral at specified baudrate (predefined symbols DpaBaud_xxx can

be used at the code) and discards internal read and write buffers. The size of the read and write buffers
is 32 bytes.

Request

NADR PNUM PCMD HWPID 0

NADR 0x0C 0x00 ? BaudRate

BaudRate specifies baud rate:

¶ 0x00   1 200 baud

¶ 0x01   2 400 baud

¶ 0x02   4 800 baud

¶ 0x03   9 600 baud

¶ 0x04  19 200 baud

¶ 0x05  38 400 baud

¶ 0x06  57 600 baud

¶ 0x07 115 200 baud

¶ other returns ERROR_DATA

Response

General response to writing request with STATUS_NO_ERROR Error code.

Example 1

Open UART for communication with 9 600 baud rate:

¶ DPA request (master > slave)

NADR=0x0000, PNUM=0x0C, PCMD=0x00, HWPID=0xFFFF, Data={0x0 3} (9 600 baud)

 IQRF DPA

© 2013-2015 MICRORISC s.r.o. www.iqrf.org Tech_Guide_DPA_Framework150805 Page 45

¶ DPA response (slave > master)
NADR=0x0000, PNUM=0x0C, PCMD=0x80, HWPID=0xABCD, Data={0x00} (No error)

 3.13.2.1 Source code support

typedef struct
{
 uns8 BaudRate;
} TPerUartOpen_Request ;

TPerUartOpen_Request _DpaMessage. PerUartOpen_Request ;

 3.13.3 Close

Closes UART peripheral.

Request

NADR PNUM PCMD HWPID

NADR 0x0C 0x01 ?

Response

General response to writing request with STATUS_NO_ERROR Error code.

 3.13.4 Write & Read

Writes and/or reads data to/from UART peripheral. If UART is not open, the request fails with
ERROR_FAIL.

Request

NADR PNUM PCMD HWPID 0 1 é n

NADR 0x0C 0x02 ? ReadTimeout WrittenData

ReadTimeout Specifies timeout in 10 ms unit to wait for data to be read from UART after data is

(optionally) written. 0xff specifies that no data should be read.
WrittenData Optional data to be written to the UART
n Number of bytes to be written.

Response

NADR PNUM PCMD HWPID ErrN DpaValue 0 é n-1

NADR 0x0C 0x82 ? 0 ? ReadData

ReadData Optional data read from UART if the reading was requested and data is available.
n Number of bytes that was read.

Please note that internal buffer limits maximum number of bytes to
PERIPHERAL_UART_MAX_DATA_LENGTH.

Example 1

Write three bytes (0x00, 0x01 and 0x02) to UART, no reading:
¶ DPA request (master > slave)

NADR=0x0000, PNUM=0x0C, PCMD=0x02, HWPID=0xFFFF, Data={0xff} (No reading)

{0x00,0x01,0x02} (written data)

¶
 DPA response (slave > master)

NADR=0x0000, PNUM=0x0C, PCMD=0x82, HWPID=0xABCD, Data={0x00} (No error)

Example 2

 IQRF DPA

© 2013-2015 MICRORISC s.r.o. www.iqrf.org Tech_Guide_DPA_Framework150805 Page 46

Write three bytes (0x00, 0x01 and 0x02) to UART, read 4 bytes after 10 ms:

¶ DPA request (master > slave)

NADR=0x0000, PNUM=0x0C, PCMD=0x02, HWPID=0xFFFF, Data={0x01} (10 ms timeout)

{0x00,0x01,0x02} (written data)

¶ DPA response (slave > master)
NADR=0x0000, PNUM=0x0C, PCMD=0x82, HWPID=0xABCD,
Data={0x00} (No error) {0xaa,0xbb,x0cc,0xdd} (read data)

 3.13.4.1 Source code support

typedef struct
{
 uns8 ReadTimeout;
 uns8 WrittenData[DPA_MAX_DATA_LENGTH - sizeof (uns8)];
} TPerUartSpiWriteRead_Request ;

TPerUartSpiWriteRead_Request _DpaMessage. PerUartSpiWriteRead_Request ;

 3.14 FRC

PNUM = 0x0D for standard FRC peripheral.

The peripheral is available at the [C] and [CN] devices.

 3.14.1 Peripheral information

PerT PERIPHERAL_TYPE_FRC
PerTE PERIPHERAL_TYPE_READ_WRITE
Par1 Length of FRC data returned by Send command.
Par2 Not used

 3.14.2 Send

This command starts Fast Response Command (FRC) process supported by IQRF OS. It allows
quickly and using only one request to collect same type of information (data length) from multiple
nodes in the network. Type of the collected information is specified by a byte called FRC command.
Currently IQRF OS allows to collect either 2 bits from all (up to 239) nodes, 1 byte from up to 62 nodes
(having logical addresses 1-62) or 2 bytes from up to 30 nodes (having logical addresses 1-30). Type
of collected data is specified by FRC command value:

Type of collected data FRC Command interval Reserved interval User interval

2 bits 0x00 Ƶ 0x7F 0x00 Ƶ 0x3F 0x40 Ƶ 0x7F
1 byte 0x80 Ƶ 0xDF 0x80 Ƶ 0xBF 0xC0 Ƶ 0xDF
2 bytes 0xE0 Ƶ 0xFF 0xE0 Ƶ 0xEF 0xF0 Ƶ 0xFF

When 2 bits are collected, then the 1

st
 bits from the nodes are stored in the bytes of index 0-29 of the

output buffer, 2
nd

 bits from the nodes are stored in the bytes of index 32-61.

When 1 byte is collected then bytes from each node (1-62) are stored at bytes 1-62 of the output
buffer.

When 2 bytes are collected then byte pairs for each node (1-30) are stored at bytes 2-61 of the output
buffer.

For more information see IQRF OS manuals. If node does not return a FRC value for some reason,
then either returned bits or bytes are equal to 0. This is why it is necessary to code the zero return
value into a nonzero one.

The time when the response is delivered depends on the type of the FRC command and used RF
mode. Consult IQRF OS guides for the response time calculation.

 IQRF DPA

© 2013-2015 MICRORISC s.r.o. www.iqrf.org Tech_Guide_DPA_Framework150805 Page 47

Request

NADR PNUM PCMD HWPID 0 1 é n

NADR 0x0D 0x00 ? FRC Command UserData

FRC Command Specifies data to be collected.
UserData User data that are available at IQRF OS array variable

DataOutBeforeResponseFRC at FRC Value event. The length n is from 2 to
30 bytes.

Response

NADR PNUM PCMD HWPID ErrN DpaValue 0 1 é n

NADR 0x0D 0x80 ? 0 ? Status FRC data

Status Return code of the sendFRC() IQRF OS function. See IQRF OS documentation for

more information.
FRC data Data collected from the nodes. Because the current version of DPA cannot transfer

the whole FRC output buffer at once (currently only up to 55 bytes), the remaining
bytes of the buffer can be read by the next described Extra result command.

 3.14.2.1 Source code support

typedef struct
{
 uns8 FrcCommand;
 uns8 UserData[30];
} TPerFrcSend_Request ;

TPerFrcSend_Request _DpaMessage. PerFrcSend_Request ;

typedef struct
{
 uns8 Status;
 uns8 FrcData[DPA_MAX_DATA_LENGTH - sizeof (uns8)];
} TPerFrcSend_Response;

TPerFrcSend_Response DpaMessage. PerFrcSend_Response;

 3.14.3 Extra result

Reads remaining bytes of the FRC result, so the total number of bytes obtained by both commands
will be total 64. It is needed to call this command immediately after the FRC Send command to
preserve previously collected FRC data.

Request

NADR PNUM PCMD HWPID

NADR 0x0D 0x01 ?

Response

NADR PNUM PCMD HWPID ErrN DpaValue 0 é n

NADR 0x0D 0x81 ? 0 ? FRC data

FRC data Remaining FRC data that could not be read by FRC Send command because DPA

data buffer size limitations.

 3.14.4 Send Selective

Similar to Send but allows to specify a set of nodes that will receive the FRC command and return
FRC data. Together with Acknowledged broadcast - bits it can be then used to execute DPA request

 IQRF DPA

© 2013-2015 MICRORISC s.r.o. www.iqrf.org Tech_Guide_DPA_Framework150805 Page 48

at selected nodes only and get the confirmation plus one data bit from selected nodes. Both request
and response have the same structure as Send except SelectedNodes field. Also length of UserData
field is limited to 25 bytes. When 1 byte or 2 bytes are collected then results from all selected nodes
are adjacent, so there are no gaps filled with 0s for unselected nodes (unlike Send command).

Request

NADR PNUM PCMD HWPID 0 1 é 30 31 é n

NADR 0x0D 0x02 ? FRC Command SelectedNodes UserData

FRC Command Specifies data to be collected.
SelectedNodes Specifies a bitmap with selected nodes. Bit1 of the 1

st
 byte of the bitmap

represents node with address 1, bit2 of the 1
st
 byte of the bitmap represents

node with address 2, …, bit7 of the 30
st
 byte of the bitmaps represents nodes

with address 239.
UserData User data that are available at IQRF OS array variable

DataOutBeforeResponseFRC at FRC Value event. The length of data is from
2 to 25 bytes.

Response

See Send DPA response.

 3.14.4.1 Source code support

typedef struct
{
 uns8 FrcCommand;
 uns8 SelectedNodes[30];
 uns8 UserData[25];
} TPerFrcSendSelective_Request ;

TPerFrcSendSelective_Request _DpaMessage. PerFrcSendSelective_Request ;

 3.14.5 Set FRC Params

Sets global FRC parameters.

Request

NADR PNUM PCMD HWPID 0

NADR 0x0D 0x03 ? FRCresponseTime

FRCresponseTime Value corresponding to the one of constants _FRC_RESPONSE_TIME_??_MS

(see IQRF-macros.h) to set maximum time reserved for preparing return FRC
value. See IQRF documentation for more details.

Response

General response to writing request with STATUS_NO_ERROR Error code.

 3.14.5.1 Source code support

typedef struct
{
 uns8 FRCresponse Time;
} TPerFrcSetParams_Request ;

TPerFrcSetParams_Request _DpaMessage. PerFrcSetParams_Request ;

 IQRF DPA

© 2013-2015 MICRORISC s.r.o. www.iqrf.org Tech_Guide_DPA_Framework150805 Page 49

 3.14.6 Predefined FRC Commands

There are a few predefined FRC commands. User can implement custom FRC command too. See
User FRC Codes intervals for allowed custom FRC command values and FrcValue event.

All predefined FRC commands prepare returned FRC value within the shortest predefined FRC
response time of 40 ms (corresponds to _FRC_RESPONSE_TIME_40_MS constant). Only in case of
Memory read and Memory read plus 1 commands the FRC response time depends on the DPA
request that is specified by user and executed before the FRC value is returned. Event
FrcResponseTime is not implemented for predefined FRC commands therefore FRC response time
return 0xFF for them.

 3.14.6.1 Prebonding

FRC_Prebonding = 0x00

Collects bits. Gives detail information about the state of pre-bonding. Bit 0 is 1 when node is
accessible; bit1 is 1 if the node provided pre-bonding to a new node. If bit 0 of user data sent with FRC
command is set, the remote bonding at node device is also disabled. Subsequently detail information
can be read using Read remotely bonded module ID from the node.

 3.14.6.2 UART or SPI data available

FRC_UART_SPI_data = 0x01

Collects bits. Bit 0 is 1 when node is accessible; bit1 is 1 when there is some data available for
reading from UART or SPI peripheral.

 3.14.6.3 Acknowledged broadcast - bits

FRC_AcknowledgedBroadcastBits = 0x02

This command except for collecting bits allows executing DPA Request stored at FRC user data after
the FRC result is sent back [sync]. When the Send Selective request is used, then the DPA request is
executed at selected nodes only.

FCR user data has the following content. Please note that DPA does not check the correct content or
length of FRC user data (except maximum FRC user data length 30 bytes).

0 1 2 3 é 4 5 é length - 1

Length PNUM PCMD HWPID PData

Length Total length of FRC user data containing the DPA Request.
PNUM Peripheral number to execute DPA Request at.
PCMD Peripheral command.
HWPID HWPD of the DPA Request.
PData Optional DPA Request Data.

DPA Request is executed only when HWPID matches the HWPID of the device or
HWPID_DoNotCheck is specified. In this case also FrcValue event is raised to allow setting resulting
Bit.1 by user. The sender address of the embedded DPA request equals to 0x00 (coordinator address)
and the addressee addresses is 0xFF (broadcast address).

Returned bits:

bit 0 bit 1 Description

0 0 Node device did not respond to FRC at all.

0 1 HWPID did not match HWPID of the device.

1 x HWPID matches HWPID of the device. Bit.1 can be set by FrcValue event. At
the end DPA Request is executed.

Example of FRC user data:

This example will pulse both LEDs after the FRC is collected. To pulse both LEDs by one request a
Batch request is used to package individual 2 LED pulse requests into one request.

 IQRF DPA

© 2013-2015 MICRORISC s.r.o. www.iqrf.org Tech_Guide_DPA_Framework150805 Page 50

16

{Length}
, 2

{PNUM=OS}
, 5

{PCMD=Batch}
, 0xffff

{HWPID}
, [5

{LED Request length}
,7

{PNUM=LEDG}
,3

{PCMD=PulseLED}
,

0xffff
{HWPID}

, 5
{ LED Request length }

,6
{ PNUM=LEDR}

,3
{ PCMD=PulseLED }

, 0xffff
{HWPID}

, 0
{End of Batch}

]
 {PData=Batch

PData}

 3.14.6.4 Read temperature

FRC_Temperature = 0x80

Collects bytes. Resulting byte equals to the temperature value read by getTemperature() IQRF OS
method. If resulting temperature is 0°C, that would normally equal to value 0, then a fixed value 0x7F
is returned instead. This value substitution makes it possible to distinguish between devices reporting
0°C and devices not reporting at all. Device would normally never return a temperature corresponding
to the value 0x7F, because +127°C is out of working temperature range.

 3.14.6.5 Acknowledged broadcast - bytes

FRC_AcknowledgedBroadcastBytes = 0x81

Collects bytes. Resulting byte equals normally to the same temperature value as Read temperature
command, but if this FRC command is caught by FrcValue event and a nonzero value is stored at
responseFRCvalue then this value is returned instead of temperature. FRC user data also stores DPA
request to execute after data bytes are collected in the same way as Acknowledged broadcast - bits
FRC command does.

 3.14.6.6 Memory read

FRC_MemoryRead = 0x82

Collects bytes. Resulting byte is read from the specified memory address after provided DPA Request
is executed. This allows getting one byte from any memory location (RAM, EEPROM and EEEPROM
peripherals, Flash, MCU register, etc.). As the returned byte cannot equal to 0 there is also Memory
read plus 1 FRC command available.

FCR user data has the following content. Please note that DPA does not check the correct content or
length of FRC user data. Batch request is not allowed to be a DPA request being executed.

0 é 1 2 3 4 5 é 6 - Length

Memory address PNUM PCMD Length PData

Memory address Memory address to read the byte from.
PNUM Peripheral number to execute DPA Request at.
PCMD Peripheral command.
Length Length of the optional DPA request data.
PData Optional DPA Request Data.

Example 1

This example reads OS version. OS Read DPA Request will be executed and then a byte from
_DpaMessage.PerOSRead_Response.OsVersion variable (the request stores the result/response
there) will be returned. The actual address of this byte is 0x4A4. See .h or .var files for details.

FRC command = FRC_MemoryRead = 0x82
Memory address = 0x4A4
PNUM = PNUM_OS = 0x02
CMD = CMD_OS_READ = 0x00
Length = 0 = No data bytes
PData none

Example 2

This example reads value of IQRF OS lastRSSI variable. Dummy LED Get DPA Request will be
executed and then a byte from lastRSSI variable will be returned. The actual address of this variable is

 IQRF DPA

© 2013-2015 MICRORISC s.r.o. www.iqrf.org Tech_Guide_DPA_Framework150805 Page 51

0x5B6. Open a generated .var file of any IQRF compiled project to find out an address of a system
variable.

FRC command = FRC_MemoryRead = 0x82
Memory address = 0x5B6
PNUM = PNUM_LEDR = 0x06
CMD = CMD_LED_GET = 0x02
Length = 0 = No data bytes
PData none

 3.14.6.7 Memory read plus 1

FRC_MemoryReadPlus1 = 0x83

Same as Memory read but 1 is added to the returned byte in order to prevent returning 0. This means
that this FRC command cannot return 0xFF value.

Example 1

This example returns byte+1 being read from EEPROM peripheral at address 3. EEPROM Read DPA
request will be executed and then a byte from _DpaMessage.Response.PData[0] (the request stores
the result/response there) will be returned. The actual address of this byte is 0x4A0. See .h or .var
files for details.

FRC command = FRC_MemoryReadPlus1 = 0x83
Memory address = 0x4A0
PNUM = PNUM_EEPROM = 0x03
CMD = CMD_EEPROM_READ = 0x00
Length = 2 = Two data bytes
PData[0] = 3 = Read from EEPROM address 3
PData[1] = 1 = Read one byte from EEPROM

 3.14.6.8 FRC response time

FRC_FrcResponseTime = 0x84

Collects bytes. This predefined FRC command is used to find out FRC response time of the specified
user FRC command. This is useful when a network consists of devices with different hardware profiles
implementing the same user FRC command but a different way that might result in different FRC
response times. In this case it is necessary to specify the maximum FRC response time that has any
node from the set of nodes that will receive the specified FRC command. This FRC command actually
raises FrcResponseTime event where a user code returns the time. The returned time value equals to
the value of the corresponding _FRC_RESPONSE_TIME_??_MS constant (see IQRF-macros.h) with the
lowest bit set (internally by DPA) in order to prevent returning zero value. If the specified FRC
command is not supported (i.e. FrcResponseTime event is not handled) returned value is 0xFF.

FRC user data has the following format:

0 1

FRCcommand 0

FRCcommand Value of the user FRC command to read FRC response time of.

 IQRF DPA

© 2013-2015 MICRORISC s.r.o. www.iqrf.org Tech_Guide_DPA_Framework150805 Page 52

 4 HWP Configuration
HWP (hardware profile) configuration is stored at the MCU Flash memory. It is necessary to correctly
configure the device before DPA is used for the first time. The configuration can be modified by IQRF
IDE using SPI or RFPGM programming, by DPA Service Mode or by Read HWP configuration/Write
HWP configuration commands. There are predefined symbols CFGIND_??? having address of each
configuration item.

The following table depicts documented configuration items. Other items are reserved. Total size of
the configuration block is 32 bytes.

Address Description

00 Checksum of HWP Configuration block. See Write HWP configuration for details.

01
[**]

 Array of 32 bits. Each bit enables/disables one of the standard 32 predefined
peripherals. Peripheral #0 (Coordinator) is controlled by bit 0.0, peripheral #31
(currently not used, but reserved) is controlled by bit 3.7. It does not make sense to
enable the peripheral that is not implemented in the currently used device (see
Peripheral enumeration).

02
[**]

03
[**]

04
[**]

05
[*]

 DPA configuration bits:

 bit 0 If set, then a Custom DPA handler is called in case of an event. The handler can define
user peripherals, handle messages to standard peripherals and add special used
defined device behavior. If set and the Custom DPA handler is not detected the device
indicates error state. Find more information at Custom DPA handler chapter.

 bit 1 If set, then Node device can be controlled by a local interface. In this case the same
peripheral must not be enabled. This option is not valid for a main network coordinator
device [C] and is not supported at LP mode at [N] and [CN] devices.

 bit 2 If set, then DPA Autoexec is run at later stage of the module boot time.

 bit 3 If set, then the Node device does not route packets on the background.

 bit 4 If set, then DPA IO Setup is run at early stage of the module boot time.

 bit 5 If set, then device receives also peer-to-peer (non-networking) packets and raises
PeerToPeer event.

 bits 6-7 Reserved

06 Main RF channel A of the optional subordinate network in case the node also plays a
role of the coordinator of such network. Such network can be controlled by [CN] device.
Valid numbers depend on used RF band.

07 Same as above but second B channel.

08
[*]

 RF output power. Valid numbers 0-7.

09 RF signal filter. Valid numbers 0-64.

0A
[*]

 Timeout for receiving RF packets at LP mode at N device. Unit is cycles (one cycle is
46 ms at LP mode). Greater values save energy but might decrease responsiveness to
the master interface DPA Requests and also decrease Idle event calling frequency.
Valid numbers are 1-255. See also API variable LP_toutRF.

0B
[*]

 Baud rate of the UART interface if one is used. Uses the same baud rate coding as
UART Open (i.e. 0x00 = 1 200 baud)

0C A nonzero value specifies an alternative DPA service mode channel.

11
[***]

 Main RF channel A of the main network. Valid numbers depend on used RF band.

12 Same as above but second B channel.

[*] The device must be restarted for configuration item change to take effect.
[**] Same as [*] but only in case of SPI and UART standard peripheral bits.
[***] The [C] or [N] device must be restarted for configuration item change to take effect.

 IQRF DPA

© 2013-2015 MICRORISC s.r.o. www.iqrf.org Tech_Guide_DPA_Framework150805 Page 53

 5 Device Startup
When device (1) boots it first optionally goes into (2) RFPGM
mode supposed this mode is (enabled) configured in to OS tab
of the TR Configuration dialog box at IQRF IDE. RFPGM mode
is indicated by a repeated long green LED light followed by
short red LED flash. RFPGM mode is terminated depending on
its configuration in the IQRF IDE. RFPGM mode is fully
controlled by IQRF OS.

Next (3) IO Setup is executed if one is enabled.

At the very beginning it is possible to remotely start the device
at so called (4) DPA Service Mode (DSM). A special tool e.g.
CATS - DPA Service Tool from IQRF IDE is needed to do it. In
the DPA Service Mode the device can be fully controlled by
individual DPA commands regardless of the device
configuration so it gives possibility to update or fix a corrupted
device configuration, find out its network address, (un)bond it,
find out OS information, reprogram the device etc.
DSMactivated API variable indicates whether DSM was started
during device startup. Upon DSM exit the device is always
reset. Device first tries to establish DSM session at the fixed
channel number 0 and then it tries an alternative channel
optionally specified at HWP configuration. CATS - DPA
Service Tool must be set to use the same required channel for
the DSM session.

Brown-out Reset is disabled now. Then in case of full DPA
version comes (5) the check whether the device is IQRF Data
Controlled Transceivers (DCTR). If this is not the case the
device halts and both red and green LEDs flash rapidly. Now
user interrupt is enabled so Interrupt event can be raised if any
interrupt source is enabled from now on.

Bonding or unbonding phase being valid only for [N] and [CN]
devices comes next.

By default a bonding or a bond removal (unbonding) at node
side is initiated and controlled by „default“ IQRF button
connected between ground and both PORTA.5 and PORTB.4
MCU pins which is normally available at IQRF development
tools. Default behavior can be modified by an implementation
of Reset event that is raised during bonding and/or unbonding
phases.

Already bonded node can be (6) unbonded by the following
procedure. Switch off the node. Keep pressed the button and
switch on the node. Skip optional RFPGM mode depending on
its configuration (typically pressed button terminates it). Keep
button pressed. Green LED is then on. After 2 seconds the
green LED goes off. Release the button immediately within 0.5 s. Unbonding is then confirmed by red
LED being on for 1 second and consequently by the rapid red flashes described above. Such
complicated unbonding procedure is needed in order to prevent unwanted unbonding caused by
accidental button press after the device is reset.

(7) If node is not bonded then its red LED rapidly flashes (four times per second). Node waits for the
button press. If the button is not pressed within 10s then the node goes into power saving sleep mode
and red LED stops flashing. From the sleep mode the node can be woken up by the button press. By
pressing the button a bonding process is initiated. If the button is pressed the node continuously
requests bonding (indicated by red LED). If the red LED becomes off and a green LED is lit when

Boot

RFPGM

DPA Service Mode

DCTR check

Unbonding (Reset event)

Bonding (Reset event)

LED startup indication

Init event

Interface started

Autoexec

“Reset” response

Main Loop

(1)

(2)

(3)

(4)

(5)

(6)

(7)

(8)

(9)

(10)

(11)

IO Setup

(12)

 IQRF DPA

© 2013-2015 MICRORISC s.r.o. www.iqrf.org Tech_Guide_DPA_Framework150805 Page 54

button is still pressed then the node is bonded. If the red LED keeps flashing rapidly after the button is
released then the node is not bonded yet and the whole bonding phase repeats.

At this point [N] an [CN] devices are bonded and ready to work. This is (8) indicated by short red LED
flash. If the device has a temporary network address (0xFE) obtained by remote bonding then the
device flashes twice. Devices [C] and [CN] perform one green LED flash instead when they are ready.
In case of [CN] device this flash goes together with 1

st
 red LED flash.

After that (9) Init event is raised and (10) Interface is started (in case of [N] and [CN] devices only
when enabled at HWP Configuration).

Consequently an (11) Autoexec is executed if one is enabled.

At (12) if the interface is enabled (always at [C] device) the device (being always interface slave)
sends the following asynchronous “Reset” DPA response equal (except PCMD) to Peripheral
enumeration response to the interface master.

NADR PNUM PCMD HWPID PData

NADR 0xFF 0x3F ? See DPA response of Peripheral enumeration

Then the [C] device checks a presence of the connected interface master device during startup. If the
data of the “Reset” response are not collected from the interface by the interface master within 100 ms
than the device consider interface master not being present. When interface master is not connected
an extra green LED flash is carried out and API variable IFaceMasterNotConnected is set to 1.

 IQRF DPA

© 2013-2015 MICRORISC s.r.o. www.iqrf.org Tech_Guide_DPA_Framework150805 Page 55

 6 Autoexec

If Autoexec feature is enabled at HWP Configuration, then a series of DPA requests can be executed
at the boot time (after Init event) of the device. Both sender and addressee addresses of the requests
are equal to 0xFC (local address). DPA requests are stored at the block at the external EEPROM
starting from its physical address AUTOEXEC_EEEPROM_ADDR = 0x7c0 (the array is located at the
very end of the external EEPROM DPA peripheral address space; size of the block is 64 bytes). When
addressing this EEPROM space by DPA EEEPROM peripheral please note that the actual address
used will differ between node or coordinator devices as the amount of coordinator available external
EEPROM space is limited for the EEEPROM peripheral. DPA requests are stored next to each other
and are structured according DPA protocol. There is one exception - a total size of the DPA request in
bytes is stored at the place of a corresponding NADR (in this case it is only 1 byte wide, not 2 bytes as
normal NADR). 0x00 is stored after the very last DPA request to indicate the end of Autoexec batch.
When executing DPA request a local interface notification is not performed although DPA via interface
is enabled. Other events at the user DPA routine are called as usual. It is not allowed to embed Batch
within series of individual DPA requests.

Autoexec example:

The following example shows the bytes stored at the Autoexec external EEPROM memory space that
will run these 4 actions upon the module reset:
1. Switch the green LED On (PNUM=0x07)
2. Open UART at 9 600 baud rate (PNUM=0x0C)
3. Write hex. bytes [01,02,03,04,05] to the UART (PNUM=0x0C)
4. Write hex. bytes [06,07,08,09,0a] to the RAM at address 0x0A (PNUM=0x05)

Actual bytes stored at serial EEPROM from address 0x7c0:

 Len PNUM PCMD HWPID Data
1. 0x05, 0x07, 0x01 (LED On), 0xFFFF
2. 0x06, 0x0C, 0x00 (UART open), 0xFFFF, 0x03 (9 600 baud)

3. 0x0b, 0x0C, 0x02 (UART write), 0xFFFF, 0x FF(no UART read), {0x01, 0x02, 0x03, 0x04, 0x05} (data)
4. 0x0b, 0x05, 0x01 (RAM write), 0xFFFF, 0x0a (address), {0x06, 0x07, 0x08, 0x09, 0x0a} (data)
5. 0x00(end of Autoexec)

C code to upload Autoexec example to the external EEPROM:

#define NO_CUSTOM_DPA_HANDLER

#include "template - basic.h"
#include "DPA.h"
#include "DPAcustomHandler.h"

#pragma cdata[__EEESTART + AUTOEXEC_EEEPROM_ADDR] = \
/* Len PNUM PCMD HWPID Data */ \
 5, PNUM_LEDG, CMD_LED_SET_ON, 0xff , 0xff , \
 6, PNUM_UART, CMD_UART_OPEN, 0xff , 0xff , DpaBaud_9600, \
 11, PNUM_UART, CMD_UART_WRITE_READ, 0xff , 0xff , 0xff , 1, 2, 3, 4, 5, \
 11, PNUM_RAM, CMD_RAM_WRITE, 0xff , 0xff , 0x0a, 6, 7, 8, 9, 10, \
0

☼ See example code DpaAutoexec.c for more details.

 IQRF DPA

© 2013-2015 MICRORISC s.r.o. www.iqrf.org Tech_Guide_DPA_Framework150805 Page 56

 7 IO Setup
IO Setup feature can be used to setup direction, pull-ups and value of individual IO pins of the MCU at
the very beginning of the device startup. It is very similar to Autoexec except only DPA peripheral IO
requests are executed in order to make sure device will always enter DPA Service Mode that can be
used to fix an incorrect behavior. Also every request must use HWPID equal to 0xFFFF
(HWPID_DoNotCheck). IO Setup DPA requests likewise Autoexec ones are stored at external
EEPROM memory but in this case starting from its physical address IOSETUP_EEEPROM_ADDR =
0x7a0; size of the block is 32 bytes (it is located just before Autoexec memory space).

IO Setup example:

The following example shows the bytes stored at the IO Setup external EEPROM memory space that
will run these 2 commands upon the module reset:

1. Sets PORTB.7 (controls green LED) as output
2. Sets green LED on for 1s and then off for 1s

Actual bytes stored at serial EEPROM from address 0x7a0:

 Len PNUM PCMD HWPID Data
1. 0x08, 0x09, 0x00(IO Direction), 0xFFFF, { 1,0x80,0x00 } (B.7 = output),
2. 0x11, 0x09, 0x01 (IO Set), 0xFFFF, { 1,0x80,0x80 } (B.7 = 1), { 0xff,0xe8,0x03 } (1s delay),
{ 1,0x80,0x00 } (B.7 = 0), { 0xff,0xe8,0x03 } (1s delay),
3. 0x00 (end of IO Setup)

C code to upload IO Setup example to the external EEPROM:

#define NO_CUSTOM_DPA_HANDLER

#include "template - basic.h"
#include "DPA.h"
#include "DPAcustomHandler.h"

#pragma cdata[__EEESTART + IOSETUP_EEEPROM_ADDR] = \
8, PNUM_IO, CMD_IO_DIRECTION, 0xff , 0xff , \

PNUM_IO_TRISB, 0x80, 0x00, \
17, PNUM_IO, CMD_IO_SET, 0xff , 0xff , \

PNUM_IO_PORTB, 0x80, 0x80, \
PNUM_IO_DELAY, 0xe8, 0x03, \
PNUM_IO_PORTB, 0x80, 0x00, \
PNUM_IO_DELAY, 0xe8, 0x03, \

0

☼ See example code DpaIoSetup.c for more details.

 IQRF DPA

© 2013-2015 MICRORISC s.r.o. www.iqrf.org Tech_Guide_DPA_Framework150805 Page 57

 8 Custom DPA Handler
Custom DPA handler is an optional user defined C language routine that can handle various events
and thus implements user peripherals, handles standard peripherals, provides peripheral virtualization,
adds internal device logic and much more. If the custom DPA handler is implemented it must be
enabled in the HWP configuration in order to receive events. Symbols, variables, structures, methods
etc. needed to implement custom DPA handler are defined at header files DPA.h and
DPAcustomHandler.h.

If the Custom DPA handler is enabled in the HWP Configuration but it was not detected (see point 2.
below) then device indicates an error by constant switching on the red LED and by returning
ERROR_MISSING_CUSTOM_DPA_HANDLER error code to the every DPA request (except Get
information for more peripherals and to all DPA requests at DPA service mode).

Please respect the following rules when implementing Custom DPA handler:

1. Custom DPA handler must be the first C routine declared as bit CustomDpaHandler() in your
code. It must be located at the fixed address 0x3A20 of the MCU Flash memory.

2. The very first instruction of the handler must be CLRWDT in order to indicate its presence. To do
it just insert clrwdt(); statement right after the handler header. This statement/instruction is
thus executed at the beginning of every event (except Interrupt event).

3. There is a 864 or 736 instruction long block in the MCU flash memory reserved for custom DPA
handler in the current version of DPA for DCTR-7x or DCTR-5x respectively.

4. “cases:” for unhandled events do not have to be programmed to save memory space and make
code more readable. Please see Interrupt for an exception from this rule.

5. Variables as well as function parameters must be allocated in the standard RAM bank 11 only.
The whole bank is available.

6. Variables can be also mapped to the RAM bank 12 that equals to the peripheral RAM memory
space.

7. Do not use bufferRF, bufferCOM and bufferAUX at all (except inside events Reset, Init, Idle
and DisableInterrupts). bufferAUX can be used at FrcValue event.

8. bufferINFO can be used inside events but not to carry data between evens as its content can
change. bufferINFO cannot be used at all when an event is raised during processing IO Set, FRC
Send, Get Peripheral Info or FRC Extra result as these DPA requests use bufferINFO internally.

9. Also do not use userReg0 and userReg1 variables unless you do not call any DPA API function.
10. DPA uses bits 0-1 of userStatus IQRF OS variable internally. Usage if other userStatus bits is

reserved, therefore their future availability is not guaranteed.
11. Maintain the written code as much speed optimized as possible as the long time spent in the user

code might negatively influence device behavior. Especially Interrupt and Idle events must be
programmed extremely effectively.

12. Special attention must be paid to the implementation of an Interrupt event. See details in the
dedicated chapter.

13. Do not use timer TMR6 at the coordinator only device [C]. Use DpaTicks being internally driven
by TMR6 instead.

14. Do not use IQRF methods start[Long]Delay() and waitDelay() (except inside events Reset, Init,
Idle, FrcValue and DisableInterrupts). Use waitMS() or TMR6 (but not at [C] device) instead.

15. Sending and receiving packets by predefined DPA API functions are allowed only at events
Reset, Init, Idle, DisableInterrupts, PeerToPeer and AfterRouting. It is required to keep same
RF settings (see setTXpower, setRFspeed, setRFband, setRFchannel, setRFmode, set*mode,
setNetworkFiltering*, setRouting*, etc. IQRF OS functions) that were set at the beginning of the
event upon the event exit.

16. Do not modify content of IQRF OS variables within event code. It is required to save their values
and restore them at the event exit.

17. Starting from Init event a MCU watchdog timer with 4 s period is enabled. Do not change WDT
settings. Also make sure to call clrwdt() if needed in order to prevent WDT reset.

18. If possible, try to avoid executing MCU stack demanding complex requests (e.g. Discovery) from
subroutines in order to prevent MCU stack overflow.

 IQRF DPA

© 2013-2015 MICRORISC s.r.o. www.iqrf.org Tech_Guide_DPA_Framework150805 Page 58

 8.1 Handler Example

Typical skeleton of the Custom DPA Handler looks like this (see CustomDpaHandler-Template.c
source code example for a complete template):

// Default IQRF include
#include "template - basic.h"

// Uncomment to implement Custom DPA Handler for Coordinator
//#define COORDINATOR_CUSTOM_HANDLER

// Default DPA header
#include "DPA.h"
// Default Custom DPA Handler header
#include "DPAcustomHandler.h"

// Real Custom DPA Handler function
bit CustomDpaHandler ()
{
 // Handler presence mark
 clrwdt();

 // Detect DPA event to handle
 switch (GetDpaEvent())
 {
 case DpaEvent_Interrupt:
 // ƛ
 return TRUE;

 // Other events ƛ
 case DpaEvent_Idle:
 // ƛ
 return FALSE;

 case DpaEvent_DpaRequest:
 if (IsDpaEnumPeripheralsRequest ())
 // Enumerate Peripherals
 {
 // ƛ
 return TRUE;
 }
 else if (IsDpaPeripheralInfoRequest ())
 // Get Peripheral Info
 {
 // ƛ
 return TRUE;
 }
 else
 // Peripheral Request
 {
 // ƛ
 return TRUE;
 }
 }
}

// Default Custom DPA Handler header
// (2nd include to implement Code bumper to detect too long code of the handler)
#include "DPAcustomHandler.h"

 IQRF DPA

© 2013-2015 MICRORISC s.r.o. www.iqrf.org Tech_Guide_DPA_Framework150805 Page 59

 8.2 Events Flow

The following pseudocodes illustrate behavior and raising of events at different device types. A
notation [Event] specifies that the Event is raised.

 8.2.1 Coordinator

The pseudocode applies to [C] device. For details of device startup see dedicated chapter.

if IO Setup enabled
 Run IO Setup

DPA Service Mode
[Reset]
[Init]

if Autoexec enabled
 Run Autoexec

Send Reset response to Interface
loop
 if request packet received from Interface
 if [IFaceReceive]
 Return ERROR_IFACE_CUSTOM_HANDLER to Interface
 else
 if [C] is addressed
 if not [ReceiveDpaRequest]
 if standard peripheral
 Execute standard request
 else
 [Handle Peripheral Request]
 [BeforeSendingDpaResponse]
 Send response to Interface
 [Notification]
 Execute optional [sync] part of request
 [AfterRouting]
 else
 Wait for the previous [C]>[N]>[C] routing to finish
 Send DPA Confirmation to Interface
 Transmit request packet to the network

 if packet (typically response) received from the network
 if not system packet
 if not peer to peer packet
 if not same DPA packet already received last time and
 not [ReceiveDpaResponse]
 if [C] addressed
 if not [ReceiveDpaRequest]
 if standard peripheral
 Execute standard request
 else
 [Handle Peripheral Request]
 [BeforeSendingDpaResponse]
 [Notification]
 Execute optional [sync] part of request
 [AfterRouting]
 else
 Send received packet to Interface
 else
 if peer to peer packet enabled
 [PeerToPeer]
 else
 if remote bonding and not [AuthorizePreBonding]
 Pre- bond node
 else
 [Idle]
endloop

 IQRF DPA

© 2013-2015 MICRORISC s.r.o. www.iqrf.org Tech_Guide_DPA_Framework150805 Page 60

 8.2.2 Node

Pseudocode applies to [N] device. For details about details of device startup see dedicated chapter.

if IO Setup enabled
 Run IO Setup

DPA Service Mode

if node is bonded and not [Reset]
 Default unbonding procedure

while node is not bonded
 if not [Reset]
 Default bonding procedure
[Init]

if Autoexec enabled
 Run Autoexec

Send Reset response to Interface
loop
 if request packet received from the network
 if not system packet
 if not peer to peer packet
 if not FRC request
 if not [ReceiveDpaRequest]
 if standard peripheral
 Execute standard request
 else
 [Handle Peripheral Request]
 [BeforeSendingDpaResponse]
 if packet was not broadcasted
 Wait for [C]>[N] routing to finish
 Transmit response back to network
 [Notification]
 if Interface enabled
 Send notification to Interface
 Wait for [C]>[N] routing to finish
 Execute optional [sync] part of request
 [AfterRouting]
 else
 Wait for [C]>[N] routing to finish
 if not predefined FRC command
 [FrcValue]
 Response FRC value
 else
 if peer to peer packet enabled
 [PeerToPeer]
 else
 if remote bonding and not [AuthorizePreBonding]
 Pre- bond node
 else
 [Idle]

 if local request packet received from enabled Interface
 if not [ReceiveDpaRequest]
 if standard peripheral
 Execute standard request
 else
 [Handle Peripheral Request]
 [BeforeSendingDpaResponse]
 Send response back to Interface
 [Notification]
 Execute optional [sync] part of request
 [AfterRouting]
endloop

 IQRF DPA

© 2013-2015 MICRORISC s.r.o. www.iqrf.org Tech_Guide_DPA_Framework150805 Page 61

 8.2.3 General evens

Next chapters show pseudocodes illustrating logic of raising general evens at any device where the
described event makes sense.

 8.2.3.1 Interrupt

Interrupt event is raised whenever an MCU interrupt occurs.

if MCU interrupt
 [Interrupt]

 8.2.3.2 Disable Interrupts

Disable interrupts event is raised at Reset, Restart and Run RFPGM commands.

if Run RFPGM
 [Disable Interrupts]
 Device will reset or restart

 8.2.3.3 Sleep Events

Sleep events (BeforeSleep and AfterSleep) are raised around precise Sleep command.

if Sleep
 [BeforeSleep]
 Execute sleep
 [AfterSleep]

 8.3 Events

Following paragraphs describe available events in more detail. Unless otherwise specified then the
return value from the event does not matter. The code fragments are for the illustration purpose only.
Please use the C code template and examples distributed with DPA package instead.

 8.3.1 Interrupt

This event is not raised in demo version and at [C] devices. The event is called whenever an MCU
interrupt occurs. Interrupt event might be blocked by IQRF OS during packet reception so the event
might not be suitable for a high frequency and low jitter interrupts.

Please make sure the following rules are met when implementing Interrupt event:
1. The time spent handling this event is critical. If there is no interrupt to handle return immediately

otherwise keep the code as fast as possible.
Make sure the event is the 1

st
 case in the main switch statement at the handler routine. This

ensures that the event is handled as the 1
st
 one.

It is desirable that this event is handled with immediate return even if it is not used by the custom
handler because the Interrupt event is raised on every MCU interrupt and the “empty” return
handler ensures the shortest possible interrupt routine response time.

2. Only global variables or local ones marked by static keyword can be used to allow reentrancy.
3. Make sure race condition does not occur when accessing those variables at other places.
4. Make sure (inspect .lst file generated by C compiler) compiler does not create any hidden

temporary local variable (occurs when using division, multiplication or bit shifts) at the event
handler code. The name of such variable is usually Cnumbercnt.

5. Do not call any OS functions except getINFx() and setINDFx().
6. Do not use any OS variables especially for writing access.
7. All above rules apply also to any other function being called from the event handler code, although

calling any function from Interrupt event is not recommended because of additional MCU stack
usage.

Example

 case DpaEvent_Interrupt:

 if (!TMR6IF)

 return TRUE;

 IQRF DPA

© 2013-2015 MICRORISC s.r.o. www.iqrf.org Tech_Guide_DPA_Framework150805 Page 62

 TMR6IF = FALSE;

 T6CON = 0b0.0110.1.00 ;

// timerOccured is a global or static variable
 timerOccured = TRUE;

 return TRUE;

☼ See example code CustomDpaHandler-Timer.c for more details.

 8.3.2 Idle

This event is periodically raised when a main loop is waiting for incoming RF (or interface) message to
handle. The time spent handling this event is critical. When there is no traffic then the event is called
approximately every 420 µs in STD mode at (DC)TR-5x devices.

Note that the frequency at which the event is called depends mainly on the time spend inside
RFRXpacket() IQRF OS function (used to receive network packets) located in the main DPA loop. The
worst case is when there is full IQMESH network consisting of 239 devices and the long diagnostic
timeslot (200 ms) is used. In this case the Idle event might not be called even once in 239 × 200 ms =
47.8 s.

If RF channel and mode are changed by a user code they do not have to be restored back at [CN]
devices as channel and mode are regularly updated inside the main application loop.

Example

 case DpaEvent_Idle:
 // Go sleep?
 if (sleepTime != 0)
 {
 // Prepare OS Sleep DPA Request
 // Time in 2.097 s units
 _DpaMessage. PerOSSleep_Request.Time = sleepTime;
 sleepTime = 0;
 _PNUM = PNUM_OS;
 _PCMD = CMD_OS_SLEEP;
 // LEDG flash after wake up
 _DpaMessage. PerOSSleep_Request.Control = 0b 0100;
 _DpaDataLength = sizeof (TPerOSSleep_Request);
 // Perform local DPA Request
 // BeforeSleep and AfterSleep events will not be called in this case!
 DpaApiLocalRequest ();
 }

 // Return user DPA value
 UserDpaValue = myUserDpaValue;
 return FALSE;

☼ See example code CustomDpaHandler-Timer.c, CustomDpaHandler-Coordinator-ReflexGame.c for
more details.

 8.3.3 Init

This event is called just before the main loop starts after Reset event i.e. when the [N] or [CN] is
bonded. Also Enumerate Peripherals is called before this event is raised in order to find out the
hardware profile ID. Immediately after the event is processed the Autoexec is executed. This event is
typically used to initialize peripherals and global variables. If the initialization is needed as soon as
possible and even if the device is not bonded yet then it can be implemented inside 1

st
 call of Reset

event.

If variable NodeWasBonded is set, then variable DataOutBondRequestAdvanced contains user data
passed from node that provided pre-bonding of the device.

Example

 IQRF DPA

© 2013-2015 MICRORISC s.r.o. www.iqrf.org Tech_Guide_DPA_Framework150805 Page 63

 case DpaEvent_Init:
 myVariable = 123;
 T6CON = 0b0.0110.1.00 ;

 TMR6IE = 1;

 return FALSE;

☼ See example code CustomDpaHandler-Timer.c for more details.

 8.3.4 Notification

This event is called when a DPA request was successfully processed and the DPA response was
sent. DPA response (but not original request) is available at this event. User can sense what
peripheral was accessed and react accordingly. _NADR contains the address of the sender of the
original DPA requests i.e. address to send DPA response to.

Example

 case DpaEvent_Notification:
 // Anything was writen to the RAM?
 if (_PNUM == PNUM_RAM && _PCMD == CMD_RAM_WRITE)
 {
 if (PeripheralRam[0] == 0xAB)
 LEDR = 1;
 else
 LEDG = 1;

 ramWritten = TRUE;
 }

 if (_ PNUM == PNUM_EEPROM && _PCMD == CMD_EEPROM_WRITE)
 {
 uns16 someData @ bufferINFO;

 eeReadData(PERIPHERAL_EEPROM_START, sizeof (someData));
 if (someData == 0)
 {
 // ƛ
 }
 }

 return FALSE;

☼ See example code CustomDpaHandler-LED-MemoryMapping.c, CustomDpaHandler-
PeripheralMemoryMapping.c for more details.

 8.3.5 AfterRouting

[sync] This event is called after the DPA response was sent and (optional) Notification event and
(optional) Interface Notification is sent. In any case the packet routing of the original DPA request is
finished.

Please note that the RF channel is not defined but if it is changed by a user code (e.g. before calling
DpaApiRfTxDpaPacket) its value must be restored. Also note that the original DPA request nor
response foursome as well as DPA data are not available any more.

Example

 case DpaEvent_AfterRouting:
 if (ramWritten)
 {
 ramWritten = FALSE;
 LEDR = 0;
 LEDG = 0;
 }
 return FALSE;

☼ See example code CustomDpaHandler-PeripheralMemoryMapping.c for more details.

 IQRF DPA

© 2013-2015 MICRORISC s.r.o. www.iqrf.org Tech_Guide_DPA_Framework150805 Page 64

 8.3.6 BeforeSleep

This event is called before device goes to the Sleep mode. The code has to shut down all HW and
MCU peripherals and circuitry not handler by DPA by default. Especially custom handling of SPI and
I2C MCU peripherals in non-DPA way must be handled.

This event is not implemented at the device having coordinator functionality i.e. [C] and [CN] and not
in demo version.

Example

 case DpaEvent_BeforeSleep:
 StopMyPeripherals();
 return FALSE;

☼ See example code CustomDpaHandler-Timer.c, CustomDpaHandler-UserPeripheral-i2c.c for more
details.

 8.3.7 AfterSleep

This event is called after device wakes up from the Sleep mode. The event handler is inverse to
BeforeSleep event handler.

This event is not implemented at the device having coordinator functionality i.e. [C] and [CN] not in
demo version.

Example

 case DpaEvent_AfterSleep:
 StartMyPeripherals();
 return FALSE;

☼ See example code CustomDpaHandler-Timer.c, CustomDpaHandler-UserPeripheral-i2c.c for more
details.

 8.3.8 Reset

This event is not raised in demo version. The event is called just after the module was reset. It can be
used to handle bonding/unbonding of the node in [N] and [CN] devices. In this case the code must
return TRUE. If node is not bonded the handler routine must not finish until the node is bonded. See
Init event concerning the initialization options. Interrupt is enabled so the Interrupt event can be
already called.

The event is also used to specify optional Bonding user data (see code example below) using
variables DataInBondRequestAdvanced and DataOutBondRequestAdvanced in [N] and [CN] devices
that is passed during remote bonding process and can be read by Read remotely bonded module ID.
The code should also handle setting of NodeWasBonded.

The Reset event is also once raised at [C] device for the sake of same behavior of all device types. In
this case it is not used to do bonding or unbonding of course.

Example

 case DpaEvent_Reset:
 if (!doCustomBonding)
 {
 DataInBondRequestAdvanced = 0xABCD;
 return FALSE;
 }

 if (amIBonded())
 {
 if (unBondCondition)
 {
 removeBond();
 _LEDR = 1;

 IQRF DPA

© 2013-2015 MICRORISC s.r.o. www.iqrf.org Tech_Guide_DPA_Framework150805 Page 65

 waitDelay(100);
 _LEDR = 0;
 }
 }
 else
 {

 while (!amIBonded())
 {
 if (bondRequestCondition)
 {
 DataInBondRequestAdvanced = 0x1234;
 bondRequestAdvanced();
 setWDToff();
 }
 }

 NodeWasBonded = TRUE;
 bondingUserDataOut = DataOutBondRequestAdvanced;

 }

 return TRUE;

☼ See example code CustomDpaHandler-Bonding.c for more details.

 8.3.9 Disable Interrupts

This event is not raised in demo version. The event is called when device needs all hardware
interrupts to be disabled. Such moment occurs at Reset, Restart and Run RFPGM commands.

Example

 case DpaEvent_DisableInterrupts:
 // ADC Interrupt Enable - off
 ADIE = 0;
 return FALSE;

☼ See example code CustomDpaHandler-Timer.c for more details.

 8.3.10 FrcValue

[sync] This event is called whenever the node is asked to provide data to be collected by FRC (see
Send) and specified FRC Command is not handled by DPA itself (see Predefined FRC Commands).
FRC Command value is accessible at MPRW1 IQRF OS variable. FRC data to collect must be stored
at responseFRCvalue IQRF OS variable. If 2 bytes are collected then the data must be stored at
responseFRCvalue2B variable instead. If bits are collected then only lowest 2 bits of
responseFRCvalue are used. Before calling the event both variables are prefilled with value 0x01 or
with 0x0001 respectively (except Acknowledged broadcast - bytes).

It is critical that the code will take less than 40 ms at all nodes in order to keep them synchronized (the
event is fired at the same time at all nodes) and to avoid RF collisions. If 40 ms is not enough to
prepare data then use Set FRC Params to set longer time to prepare data for FRC to return.

Important: if the event handler exceeds selected time then device does not respond via FRC at all
thus “returning” 0 value.

User data passed by Send are accessible at DataOutBeforeResponseFRC IQRF OS variable. This
event is implemented at [N] and [CN] devices only.

Example

case DpaEvent_FrcValue:
 {
 // This example is sensitive to the bit FRCommand 0x40
 if (MPRW1 == FRC_USER_BIT_FROM)
 {

 IQRF DPA

© 2013-2015 MICRORISC s.r.o. www.iqrf.org Tech_Guide_DPA_Framework150805 Page 66

 // Return info about providing remote bonding
 if (ProvidesRemoteBonding)
 // Both bits bit0 and bit1 are set now
 responseFRCvalue.1 = 1;
 }
 // This example is sensitive to the byte FRCommand 0xC0
 else if (MPRW1 == FRC_USER_BYTE_FROM)
 {
 // Just return your logical address as an example
 responseFRCvalue = ntwADDR;
 }
 // This example is sensitive to the byte FRCommand 0x F0
 else if (MPRW1 == FRC_USER_2BYTE_FROM)
 {
 // Return 2 byte value,

 responseFRCvalue 2B = Measure2Bytes();
 }

 return FALSE;
 }

☼ See example code CustomDpaHandler-FRC.c for more details.

 8.3.11 FrcResponseTime

This event is raised by predefined FRC response time command. 1
st
 FRC used data byte (i.e. variable

DataOutBeforeResponseFRC[0]) specifies the value of the user FRC command the FRC response
time is requested. The byte return value corresponds to the one of corresponding
_FRC_RESPONSE_TIME_??_MS constant (see IQRF-macros.h). It is highly recommended to implement
this event for every user defined FRC command. This allows the control system connected to the
coordinator to find out the longest FRC response time in the network consisting of “unknown”
heterogeneous node devices. DPA internally sets the lowest bit of the return value in order to prevent
returning zero (equals to _FRC_RESPONSE_TIME_40_MS) value.

Example

case DpaEvent_FrcResponseTime:
 switch (DataOutBeforeResponseFRC[0])
 {
 case FRC_USER_BIT_FROM + 0:
 case FRC_USER_BIT_FROM + 1:
 responseFRCvalue = _FRC_RESPONSE_TIME_40_MS;
 break ;

 case FRC_USER_BYTE_FROM + 0:
 responseFRCvalue = _FRC_RESPONSE_TIME_640_MS;
 break ;
 }
 break ;

☼ See example code CustomDpaHandler-FRC.c for more details.

 8.3.12 ReceiveDpaResponse

This event is called when there is a DPA response packet received from the network. If the event
handler returns TRUE, then further standard DPA response processing (passing DPA response to the
interface master internally by DpaApiSendToSpiMaster) is skipped. The event is raised even when
HWPID does not match.

This event is implemented at [C] and [CN] devices but not in demo version.

Example

case DpaEvent_ReceiveDpaResponse:
 {
 // This example just for demonstration purposes consumes any

 IQRF DPA

© 2013-2015 MICRORISC s.r.o. www.iqrf.org Tech_Guide_DPA_Framework150805 Page 67

 // DPA response CMD_LED_PULSE at peripheral PNUM_LEDG and pulses LEDR locally
 if (_PNUM == PNUM_LEDG && _PCMD == (CMD_LED_PULSE | RESPONSE_FLAG))
 {
 pulseLEDR();
 return TRUE;
 }

 return FALSE;
 }

☼ See example code CustomDpaHandler-Coordinator-PollNodes.c for more details.

 8.3.13 IFaceReceive

This event is called when there is a DPA request packet received from the interface master. If the
event handler returns TRUE, then further standard DPA request processing (sending DPA
confirmation back to the interface master, passing DPA response to the network internally by
DpaApiRfTxDpaPacketCoordinator) is skipped. In this case interface master receives an error DPA
response with ERROR_INTERFACE_CUSTOM_HANDLER Response Code. The event is raised
even when HWPID does not match.

This event is implemented at [C] device but not in demo version.

Example

case DpaEvent_IFaceReceive:
 {
 // This example just for demonstration purposes consumes any DPA Request
 // CMD_LED_PULSE at peripheral PNUM_LEDR and pulses LEDG locally
 if (_PNUM == PNUM_LEDR && _PCMD == CMD_LED_PULSE)
 {
 pulseLEDG();
 return TRUE;
 }

 return FALSE;
 }

 8.3.14 ReceiveDpaRequest

This event is not raised in demo version. The event is called when a DPA request (except Get
information for more peripherals) is received from network or from interface master (if applicable). If
the event handler returns TRUE, then the request is not passed to the default handling by DPA
Request event. In this case the programmer is fully responsible for preparing a valid DPA Response
that will be returned to the device that sent original DPA request. The event is raised even when
HWPID does not match.

Example

case DpaEvent_ReceiveDpaRequest:
// Returns error when there is an attempt to write to the address 0 of RAM peripheral
 if (_PNUM==PNUM_RAM && _PCMD==CMD_RAM_WRITE && _DpaMessage.MemoryRequest.Addr ess==0)
 {
 _PCMD = CMD_RAM_WRITE | RESPONSE_FLAG;
 DpaApiReturn PeripheralError (ERROR_FAIL) ;
}

 return FALSE;

☼ See example code CustomDpaHandler-PeripheralMemoryMapping.c for more details.

 8.3.15 BeforeSendingDpaResponse

This event is not raised in demo version. The event is called when a DPA response (except response
to Get information for more peripherals) is ready to be returned to the device that sent a DPA request
via network or from the interface master (if applicable). The event handler can inspect or modify the
DPA response event in the way that the error code is returned.

 IQRF DPA

© 2013-2015 MICRORISC s.r.o. www.iqrf.org Tech_Guide_DPA_Framework150805 Page 68

Example

case DpaEvent_BeforeSendingDpaResponse:
 // Always adds one more read byte from EEEPROM peripheral and sets it to 0x55
 if (_PNUM == PNUM_EEEPROM && _PCMD == CMD_RAM_READ)
 {
 _DpaDataLength ++;
 FSR0 = _DpaMessage.Response.PData + _DpaDataLength - 1;
 setINDF0(0x55);
 }

 return FALSE;

Example

case DpaEvent_BeforeSendingDpaResponse:
// This example hides even enabled and implemented PNUM_IO peripheral
if (IsDpaEnumPeripheralsRequest ())
 _DpaMessage.EnumPeripheralsAnswer.StandardPer[PNUM_IO / 8] &= ~(1 << (PNUM_IO % 8));
else
 if (_PNUM == PNUM_IO && _PCMD == CMD_GET_PER_INFO)
 _DpaMessage.PeripheralInfoAnswer.PerT = PERIPHERAL_TYPE_DUMMY;
return FALSE;

 8.3.16 PeerToPeer

This event is not raised in demo version. When peer-to-peer (non-networking) packets are enabled at
HWP Configuration then device raises this event when such packet is received. Peer-to-peer packets
are received by all devices receiving at the same RF channel. The peer-to-peer packets can be used
to implement e.g. simple battery operated remote control device that is not part of the DPA network. It
is highly recommended to use additional security techniques (e.g. encryption, rolling code, checksum,
CRC) against packet sniffing, spoofing and eavesdropping. As the peer-to-peer packets are not
network ones an optional addressing (_DpaParams DPA variable can be misused for this purpose)
must be implemented at custom way. It is also recommended to use the lowest possible RF output
power and listen-before-talk technique to minimize the risk of RF collision that might cause the main
network RF traffic to fail. The following minimalistic examples show only the basic usage.

Example ï Transmitter

// Set RF mode to STD TX
setRFmode(_TX_STD);
// Prepare default PIN
PIN = 0;
// Prepare "DPA" peer - to - peer packet

// DPA packet fields will be used
_MPRWF = 1;
// Fill in PNUM and PCMD
_PNUM = PNUM_LEDG;
_PCMD = CMD_LED_PULSE;
// No DPA Data
_DpaDataLength = 0;
// Transmit the prepared packet
RFTXpacket();

Example ï Handler

case DpaEvent_PeerToPeer:
 // Peer - to - peer "DPA" packet?
 if (_MPRWF)
 // Just execute the DPA request locally
 DpaApiLocalRequest();
 break ;

 IQRF DPA

© 2013-2015 MICRORISC s.r.o. www.iqrf.org Tech_Guide_DPA_Framework150805 Page 69

☼ See example code Peer-to-Peer-Transmitter.c, CustomDpaHandler-Peer-to-Peer.c,
CustomDpaHandler-PIRlighting.c for more details.

 8.3.17 AuthorizePreBonding

This event is sent whenever there is a request from a node to pre-bond to the network. The event is
raised even if the remote bonding is not enabled (see ProvidesRemoteBonding) or if the pre-bonding
was already provided (see RemoteBondingDone). This gives the user code the opportunity to monitor
all bonding requests in the network. The event handler can decide whether the pre-bonding will be
accepted (by returning FALSE value, which is the default custom DPA handler exit code) or rejected
(by returning TRUE). Please note that even when the pre-bonding request is accepted it does not
mean that the pre-bonding will be actually executed. The reason might be that the remote bonding is
not enabled or another node was already pre-bonded or this node will stay only pre-bonded (not
authorized by Authorize bond yet).

There are many options how the event handler can decide whether the request will be accepted or
rejected. Usually the handler decides based on request node MID (variable MIDoutBondRequest can

be used) or on bond request used data (variable DataInBondRequestAdvanced can be used).

Example

case DpaEvent_AuthorizePreBonding :
 // Called when remote bonding is enabled and a node requests pre - bonding

 // We might monitor all bond request s
 LogPreBondEquest(MIDoutBondRequest);

 // Is the requesting node (MID) trustworthy ?
 if (!isThustworthyMID(MIDoutBondRequest))
 return TRUE;

 // Does the node use the correct PIN being sent as bonding user data?
 if (!PINmatches(DataInBondRequ estAdvanced))
 return TRUE;

 // Allow pre - bonding of this node.
 return FALSE;

☼ See example code CustomDpaHandler-AutoNetwork.c for more details.

 8.3.18 UserDpaValue

This event is raised whenever DPA is internally required to return user defined DPA value in the
response. This event is the very last time when it is necessary to fill in UserDpaValue variable but the
user can also fill in this variable at any other event before and ignore this event.

Example

case DpaEvent_UserDpaValue:
 UserDpaValue = myValue;
 break ;

 8.3.19 DPA Request

DPA requests to peripherals are handled in the same way as the build-in DPA interpreter does it. If
DPA request is passed an event DpaEvent_DpaRequest is signaled.

☼ See example codes CustomDpaHandler-UserPeripheral???.c for more details.

 8.3.19.1 Enumerate Peripherals

This DPA request is called as a part of standard peripheral enumeration.

The purposes of the request are:

1. Specify how many user peripherals are implemented.

 IQRF DPA

© 2013-2015 MICRORISC s.r.o. www.iqrf.org Tech_Guide_DPA_Framework150805 Page 70

2. If any standard peripheral is handled by custom DPA handler instead of default handler
(overriding standard peripheral).

3. Specify HW profile ID and its version if one is implemented.

Example

case DpaEvent_DpaRequest:
 if (IsDpaEnumPeripheralsRequest())
{
 // One user peripheral defined
 _DpaMessage.EnumPeripheralsAnswer.UserPerNr = 1;
 // We override standard EEEPROM peripheral
 _DpaMessage.EnumPeripheralsAnswer.DefaultPer[PNUM_EEEPROM/8] |= 1 << (PNUM_EEEPROM % 8);
 // HW profile ID and version
 _DpaMessage.EnumPeripheralsAnswer .HWPID = 0x123F;
 _DpaMessage.EnumPeripheralsAnswer .HWPIDver = 0xABCD;

 return TRUE;
}

 8.3.19.2 Get Peripheral Info

If the user code handles user or overrides standard peripherals then this request is used to return
information about the peripheral in the standard DPA format. If the handler does not handle the DPA
“Get peripheral info request” then it must return FALSE to indicated error, otherwise it must return
TRUE.

Example

case DpaEvent_DpaRequest:
ƛ
else if (IsDpaPeripheralInfoRequest())
{
 // 1st user peripheral
 if (_ PNUM == PNUM_USER)
 {

_DpaMessage.PeripheralInfoAnswer.PerT = PERIPHERAL_TYPE_LED;
_DpaMessage.PeripheralInfoAnswer.PerTE = PERIPHERAL_TYPE_EXTENDED_READ_WRITE;
_DpaMessage.PeripheralInfoAnswer.Par1 = LED_COLOR_UNKNOWN;

 }
 return TRUE;
}

 8.3.19.3 Handle Peripheral Request

This request is sent whenever there is DPA request for a peripheral that was not handled by the
default DPA code. Typically the code handles requests for user peripherals or overridden standard
peripherals. If the handler does not handle the DPA request then it must return FALSE to indicated
error, otherwise it must return TRUE.

Please note in the following code how to return an error state. Set PNUM to PNUM_ERROR_FLAG,
set 1

st
 data byte of the DPA response to the error code, set 2

nd
 byte to the original PNUM and finally

specify that the length of the data being equal to 2. The best way is to use predefined union member
at _DpaMessage.ErrorAnswer.

If code saving is not an issue or there are just a few error types returned then it is easier to call
DpaApiReturnPeripheralError API to return the error state. Otherwise shared (using goto) central error
point is advised. Both methods can be seen in the code example below.

Example

case DpaEvent_DpaRequest:
ƛ
else if (IsDpaPeripheralInfoRequest())
 // ƛ
else

 IQRF DPA

© 2013-2015 MICRORISC s.r.o. www.iqrf.org Tech_Guide_DPA_Framework150805 Page 71

{
 // 1st user peripheral
 if (_PNUM == PNUM_USER)
 {
 // Test for some data sent
 if (DpaDataLength == 0)
 {
 // Return error ERROR_DATA_LEN
 // DpaApi Return PeripheralError (ERROR_DATA_LEN); is the easiest way
 _DpaMessage.ErrorAnswer.ErrN = ERROR_DATA_LEN;
UserErrorAnswer:
 _DpaMessage.ErrorAnswer.P NUMoriginal = _ PNUM;
 _PNUM = PNUM_ERROR_FLAG;
 _DpaDataLength = sizeof (_DpaMessage.ErrorAnswer);
 return TRUE;
 }

 if (_PCMD == 0)
 {
 UseDataCmd0(_DpaMessage.Request.PData[0]);
 _DpaDataLength = 0;
 return TRUE;
 }
 else if (_PCMD == 1)
 {
 UseDataCmd1(_DpaMessage.Request.PData[0]);
 _DpaMessage.Response.PData[0] = someDataToReturn;
 _DpaDataLength = 1;
 return TRUE;
 }
 else
 {
 // Return error ERROR_PCMD

 // DpaApi Return PeripheralError (ERROR_PCMD); is the easiest way
 DpaMessage.ErrorAnswer.ErrN = ERROR PCMD;
 goto UserErrorAnswer;
 }
 }

 return TRUE;
}

return FALSE;

 8.4 DPA API

The following functions can be called from the Custom DPA Handler routine. Please note that after
calling an API function or after modification of userReg0 variable the value of macro GetDpaEvent() is
undefined.

 8.4.1 DpaApiRfTxDpaPacket

void DpaApiRfTxDpaPacket (uns8 value, uns8 netDepth)

Available at [N] and [CN] devices. This function wraps all necessary code to send an RF DPA
message. There are only a few global parameters or variables that have to be filled in before the call
(see example below). Many other parameters are handled inside the function automatically. The
following example shows a typical usage.

Meaning of the parameter value depends whether the message is sent from a coordinator or from a
node.

¶ From Coordinator to Node: value specifies an exact number of hops used to return a DPA
response from the node. IQRF OS function optimizeHops can be used to compute this value.

¶ From Node to Coordinator: value specifies a DpaValue that is returned with the DPA response.

 IQRF DPA

© 2013-2015 MICRORISC s.r.o. www.iqrf.org Tech_Guide_DPA_Framework150805 Page 72

If the coordinator is addressed by COORDINATOR_ADDRESS = 0x00, then the DPA packet is sent
by the addressed coordinator to the interface master in case of [C] device or to the higher network by
Bridge command in case of [CN] device after it is received.
If the coordinator is addressed by LOCAL_ADDRESS = 0xFC, then the DPA packet (request) is
executed locally at the coordinator device.

Meaning of the parameter netDepth depends whether the message is sent from a coordinator or from
a node. At both cases it is used to track the depth of the message when bridged among networks.
When message is bridged to the lower network, the value is increased. When message is bridged
(back - in case of DPA response) to the higher network the value is first decreased and then the actual
bridging is performed only when the result is not zero. This ensures that the DPA response is not
bridged “above” the sender of the original DPA request. See also Bridge and NetDepth.

¶ From Coordinator to Node: use value 1.

¶ From Node to Coordinator: use value 1 if the message should be terminated at the subordinate
coordinator, use value 2 if the message should be terminated at the DPA interface of the same
coordinator or at the coordinator above the same coordinator, etc.

Calling DpaApiRfTxDpaPacket is allowed only at Idle and AfterRouting events. The function does not
take into account any IQMESH timing requirements (e.g. waiting for end of the routing process) or
possible RF signal collision.

Example

// Generate new packet ID to avoid false detection of duplicate packet
PID = pid++;
// Number of hops = my VRN
RTHOPS = ntwVRN;
// No DPA Params used
_DpaParams = 0;
// Execut e DPA request at coordinator
_NADR = LOCAL_ADDRESS;
_NADRhigh = 0;
// We will use LED peripheral
_PNUM = PNUM_LEDR;
// Pulse the LED
_PCMD = CMD_LED_PULSE;
// HW profile ID
_HWPID = 0x1234;
// Length of the data inside DPA request message
_DpaDataLength = 0;
// Transmit DPA message with DPA Value equal to the lastRSSI (can be any other value)
DpaApiRfTxDpaPacket(lastRSSI, 1);

☼ See example codes CustomDpaHandler-AsyncRequest.c for more details.

 8.4.2 DpaApiReadConfigByte

uns8 DpaApiReadConfigByte (uns8 index)

This function returns HWP configuration value from a given index (address).

Example

setRFchannel(DpaApiReadConfigByte(CFGIND_OS_CHANNEL_2ND));

☼ See example codes CustomDpaHandler-AsyncRequest.c for more details.

 8.4.3 DpaApiSendToIFaceMaster

void DpaApiSendToIFaceMaster (uns8 dpaValue)

Available at [C] and [N] (at STD mode) devices. The function passes prepared DPA packet (response)
to the interface master.

[C] device only:

 IQRF DPA

© 2013-2015 MICRORISC s.r.o. www.iqrf.org Tech_Guide_DPA_Framework150805 Page 73

If the interface master was not previously detected, then the call is actually ignored in case of SPI
interface. If there is some older data at the interface bus not being collected by the interface master
yet then the function waits until the data is read.

Calling DpaApiSendToIFaceMaster is allowed only at Idle, IFaceReceive and ReceiveDpaResponse
events.

☼ See example codes CustomDpaHandler-Coordinator-FRCandSleep.c, CustomDpaHandler-
Coordinator-PollNodes.c for more details.

 8.4.4 DpaApiRfTxDpaPacketCoordinator

uns8 DpaApiRfTxDpaPacketCoordinator ()

Available at [C] devices only. This function is specially prepared for sending DPA requests from [C] to
the [N] or [CN] devices in its network. It prepares even more of the requested parameters
automatically compared to the DpaApiRfTxDpaPacket function. Last but not least it also takes care of
waiting to send another DPA request until routing of the previously sent (and received) packet is
finished thus minimizing the probability of the network collision. The call initializes NetDepth by value
1.
The function returns number of hops used to deliver the DPA response from addressed device back to
coordinator. Number of hops used to deliver the DPA response to the addressee and slot length is
available at IQRF OS variables RTHOPS and RTTSLOT respectively. Thus the same information
(Hops, Timeslot length, Hops Response) like within DPA Confirmation is available to the developer.
See also Set Hops.
Calling DpaApiRfTxDpaPacketCoordinator is allowed only at Idle, AfterRouting and IFaceReceive
events.

Example

case DpaEvent_Idle:
 {
// The following block of code demonstrates autonomous once per 60 s sending
// of packets if the {C} is not connected to the interface master
 if (IFaceMasterNotConnected && DpaTicks. 15 != 0)
 {
 // Setup new timer
 GIE = 0;
 DpaTicks = 60 * 100L;
 GIE = 1;

 // DPA request is broadcasted
 _NADR = BROADCAST_ADDRESS;
 _NADRhigh = 0;
 // Use red LED
 _PNUM = PNUM_LEDR;
 // Make a LED pulse
 _PCMD = CMD_LED_PULSE;
 // HW profile ID
 _HWPID = HWPID_DoNotCheck;
 // This DPA request has no data
 _DpaDataLength = 0;
 // Send the DPA request
 DpaApiRfTxDpaPacketCoordinator();
 }

 return TRUE;
 }

☼ See example codes CustomDpaHandler-Coordinator-PulseLEDs.c for more details.

 8.4.5 DpaApiLocalRequest

void DpaApiLocalRequest ()

 IQRF DPA

© 2013-2015 MICRORISC s.r.o. www.iqrf.org Tech_Guide_DPA_Framework150805 Page 74

Performs a local DPA request. After the function returns a corresponding DPA response is available
except when the original DPA request was a Batch. Calling DpaApiLocalRequest is allowed at Init,
Idle, AfterRouting, BeforeSleep, AfterSleep, PeerToPeer and DisabIeInterrupts events. When a
processed DPA message is not destroyed or used later then the function can be carefully used at
ReceiveDpaResponse, IFaceReceive, ReceiveDpaRequest and BeforeSendingDpaResponse events
too. To avoid reentrancy no Custom DPA Handler events (except Interrupt event) are called during
local DPA request processing. This is the reason why performing local DPA request on custom
peripherals do not work. Also when e.g. Sleep request is executed locally, then events BeforeSleep
and AfterSleep are not raised (same applies to e.g. Run RFPGM and Disable Interrupts event). As the
DPA request is executed locally there is no need to fill in _NADR, _NADRhigh and _HWPID variables,

see example below.

Example

case DpaEvent_Idle:
 if (IsSleepTime())
 {

// Prepare OS Sleep DPA Request
 _PNUM = PNUM_OS;
 _PCMD = CMD_OS_SLEEP;
 _DpaMessage.PerOSSleep _Request .Time = 123;
 _DpaMessage.PerOSSleep _Request .Control = 0b0010;
 _DpaDataLength = sizeof (TPerOSSleep_Request);
 // Perform local DPA Request
 DpaApiLocalRequest ();
 // If no error, pulse the LEDR after wake up
 if (_PNUM != PNUM_ERROR_FLAG)
 pulseLEDR();
 }
 return TRUE;

☼ See example codes CustomDpaHandler-Coordinator-FRCandSleep.c for more details.

 8.4.6 DpaApiReturnPeripheralError

DpaApiReturnPeripheralError (uns8 error)

This is actually a macro calling internal API DpaApiSetPeripheralError(error) to prepare an error DPA
response from the peripheral DPA request handling code. Then the macro executes return TRUE.

This simple statement DpaApiReturnPeripheralError(ERROR_DATA_LEN) using the macro is fully
equivalent to following lines of code:

_DpaMessage.ErrorAnswer.ErrN = ERROR_DATA_LEN;
_DpaMessage.ErrorAnswer.PN UMoriginal = _ PNUM;
_PNUM = PNUM_ERROR_FLAG;
_DpaDataLength = sizeof (_DpaMessage.ErrorAnswer);
return TRUE;

User peripheral can return user error codes. Such code values must lie between ERROR_USER_FROM
and ERROR_USER_TO. See Response Codes.

☼ See example codes CustomDpaHandler-UserPeripheral.c for more details.

 8.5 DPA API Variables

The following variables can be used within custom DPA handler routine. The variables marked by
[readonly] are read-only variables. Writing to these variables will cause incorrect device behavior.

 8.5.1 bit ProvidesRemoteBonding

[readonly] Equals to 1 when device provides remote bonding, see Enable remote bonding.

 8.5.2 bit RemoteBondingDone

[readonly] Equals to 1 when device provided pre-bonding to a new node.

 IQRF DPA

© 2013-2015 MICRORISC s.r.o. www.iqrf.org Tech_Guide_DPA_Framework150805 Page 75

 8.5.3 bit IFaceMasterNotConnected

[readonly] Valid at [C] device. Equals to 1 when master interface device was not connected during
device startup.

In case of SPI interface it is considered not connected when a Reset DPA response is not read during
startup process.

In case of UART interface it is considered not connected when there was no DPA message received
by the interface yet.

Please note that this flag might become equal to 0 when a master interface device sends some data to
the [C] device later. The variable value is valid after Init event.

☼ See example codes CustomDpaHandler-Coordinator-PulseLEDs.c for more details.

 8.5.4 bit NodeWasBonded

Valid at [N] and [CN] devices. Is set to 1 during Device startup if the node was newly bonded. It is a
programmer's responsibility to set this variable if default bonding mechanism is overridden at Reset
event.

☼ See example code CustomDpaHandler-Bonding.c for more details.

 8.5.5 bit EnableIFaceNotificationOnRead

Valid at [N] and [CN] devices. Setting to 1 enables sending DPA notification to the interface master
even in case of “read only” DPA request. Default value is 0.

 8.5.6 uns16 DpaTicks

Implemented at [C] device only. The value of this variable is decremented every 10 ms after Init event.
The variable is driven by TMR6. The variable can be used for implementation of timing algorithms. As
this 2 byte wide variable is modified internally within CPU interrupt routine the whole (both 2 bytes)
variable should be accessed (either read or written) only when interrupt is disabled to ensure an
atomic access.

Example

case DpaEvent_Idle:
 // Is timeout over?
 if (DpaTicks .15 != 0)
 {
 // Setup new 10s timeout
 GIE = 0;
 DpaTicks = 10 * 100L;
 GIE = 1;
ƛ

☼ See example codes CustomDpaHandler-Coordinator-PulseLEDs.c for more details.

 8.5.7 uns8 LPtoutRF

Valid at [N] and [CN] devices and LP mode only. Timeout when receiving RF packets at LP mode.
After a device startup it is filled with a respective value from HWP Configuration at index 0x0A. See
that chapter for more details.

 8.5.8 uns8 ResetType

Identifies type of reset (stored at UserReg0 upon module reset). See Reset chapter at IQRF User's
Guide for more information.

 8.5.9 bit DSMactivated

Equals to 1 if the device was maintained at DPA Service Mode (see) when device was started last
time. The variable is set even when DPA Service Mode was terminated by Reset or Run RFPGM
commands. The variable is not set when DPA Service Mode was terminated by Power on Reset.

 IQRF DPA

© 2013-2015 MICRORISC s.r.o. www.iqrf.org Tech_Guide_DPA_Framework150805 Page 76

 8.5.10 uns8 UserDpaValue

This variable is used to store user defined DPA value. See Set DPA Param and UserDpaValue.

 8.5.11 uns8 NetDepth

[readonly] This variable is used at ReceiveDpaResponse event to find out whether the received
response is intended for (terminated at) the current device (NetDepth == 1) or is to be forwarded
automatically by DPA to the higher network or interface (NetDepth >= 2).

☼ See example codes CustomDpaHandler-Coordinator-PollNodes.c for more details.

 IQRF DPA

© 2013-2015 MICRORISC s.r.o. www.iqrf.org Tech_Guide_DPA_Framework150805 Page 77

 9 Constants

 9.1 Peripheral Numbers

#define PNUM_COORDINATOR 0x00
#define PNUM_NODE 0x01
#define PNUM_OS 0x02
#define PNUM_EEPROM 0x03
#define PNUM_EEEPROM 0x04
#define PNUM_RAM 0x05
#define PNUM_LEDR 0x06
#define PNUM_LEDG 0x07
#define PNUM_SPI 0x08
#define PNUM_IO 0x09
#define PNUM_THERMOMETER 0x0A
#define PNUM_PWM 0x0B
#define PNUM_UART 0x0C
#define PNUM_FRC 0x0D
#define PNUM_USER 0x20
#define PNUM_ERROR_FLAG 0xFE

 9.2 Response Codes

STATUS_NO_ERROR = 0, // No error
ERROR_FAIL = 1, // General fail
ERROR_PCMD = 2, // Incorrect PCMD
ERROR_PNUM = 3, // Incorrect PNUM or PCMD
ERROR_ADDR = 4, // Incorrect Address
ERROR_DATA_LEN = 5, // Incorrect Data length
ERROR_DATA = 6, // Incorrect Data
ERROR_HWPROFILE = 7, // Incorrect HW Profile ID used
ERROR_NADR = 8, // Incorrect NADR
ERROR_IFACE_CUSTOM_HANDLER = 9, // Data from interface consumed by Custom DPA

Handler
ERROR_MISSING_CUSTOM_DPA_HANDLER = 10, // Custom DPA Handler is missing
ERROR_USER_FROM = 0x80, // Beginning of the user code error interval
ERROR_USER_TO = 0xFE, // End of the user error code interval
STATUS_CONFIRMATION = 0xFF // Error code used to mark confirmation

 9.3 DPA Commands

#define CMD_COORDINATOR_ADDR_INFO 0
#define CMD_COORDINATOR_DISCOVERED_DEVICES 1
#define CMD_COORDINATOR_BONDED_DEVICES 2
#define CMD_COORDINATOR_CLEAR_ALL_BONDS 3
#define CMD_COORDINATOR_BOND_NODE 4
#define CMD_COORDINATOR_REMOVE_BOND 5
#define CMD_COORDINATOR_REBOND_NODE 6
#define CMD_COORDINATOR_DISCOVERY 7
#define CMD_COORDINATOR_SET_DPAPARAMS 8
#define CMD_COORDINATOR_SET_HOPS 9
#define CMD_COORDINATOR_DISCOVERY_DATA 10
#define CMD_COORDINATOR_BACKUP 11
#define CMD_COORDINATOR_RESTORE 12
#define CMD_COORDINATOR_READ_REMOTELY_BONDED_MID 15
#define CMD_COORDINATOR_CLEAR_REMOTELY_BONDED_MID 16
#define CMD_COORDINATOR_ENABLE_REMOTE_BONDING 17

#define CMD_NODE_READ 0
#define CMD_NODE_REMOVE_BOND 1
#define CMD_NODE_READ_REMOTELY_BONDED_MID 2
#define CMD_NODE_CLEAR_REMOTELY_BONDED_MID 3

 IQRF DPA

© 2013-2015 MICRORISC s.r.o. www.iqrf.org Tech_Guide_DPA_Framework150805 Page 78

#define CMD_NODE_ENABLE_REMOTE_BONDING 4
#define CMD_NODE_REMOVE_BOND_ADDRESS 5
#define CMD_NODE_BACKUP 6
#define CMD_NODE_RESTORE 7

#define CMD_OS_READ 0
#define CMD_OS_RESET 1
#define CMD_OS_READ_CFG 2
#define CMD_OS_RFPGM 3
#define CMD_OS_SLEEP 4
#define CMD_OS_BATCH 5
#define CMD_OS_SET_USEC 6
#define CMD_OS_SET_MID 7
#define CMD_OS_RESTART 8
#define CMD_OS_WRITE_CFG 15

#define CMD_RAM_READ 0
#define CMD_RAM_WRITE 1

#define CMD_EEPROM_READ CMD_RAM_READ
#define CMD_EEPROM_WRITE CMD_RAM_WRITE

#define CMD_EEEPROM_READ CMD_RAM_READ
#define CMD_EEEPROM_WRITE CMD_RAM_WRITE

#define CMD_LED_SET_OFF 0
#define CMD_LED_SET_ON 1
#define CMD_LED_GET 2
#define CMD_LED_PULSE 3

#define CMD_SPI_WRITE_READ 0

#define CMD_IO_DIRECTION 0
#define CMD_IO_SET 1
#define CMD_IO_GET 2

#define CMD_THERMOMETER_READ 0

#define CMD_PWM_SET 0

#define CMD_UART_OPEN 0
#define CMD_UART_CLOSE 1
#define CMD_UART_WRITE_READ 2

#define CMD_FRC_SEND 0
#define CMD_FRC_EXTRARESULT 1
#define CMD_FRC_SEND_SELECTIVE 2
#define CMD_FRC_SET_PARAMS 3

#define CMD_GET_PER_INFO 0x3f

 9.4 Peripheral Types

 PERIPHERAL_TYPE_DUMMY = 0x00,
 PERIPHERAL_TYPE_COORDINATOR = 0x01,
 PERIPHERAL_TYPE_NODE = 0x02,
 PERIPHERAL_TYPE_OS = 0x03,
 PERIPHERAL_TYPE_EEPROM = 0x04,
 PERIPHERAL_TYPE_BLOCK_EEPROM = 0x05,
 PERIPHERAL_TYPE_RAM = 0x06,
 PERIPHERAL_TYPE_LED = 0x07,
 PERIPHERAL_TYPE_SPI = 0x08,
 PERIPHERAL_TYPE_IO = 0x09,

 IQRF DPA

© 2013-2015 MICRORISC s.r.o. www.iqrf.org Tech_Guide_DPA_Framework150805 Page 79

 PERIPHERAL_TYPE_UART = 0x0a,
 PERIPHERAL_TYPE_THERMOMETER = 0x0b,
 PERIPHERAL_TYPE_ADC = 0x0c, (*)
 PERIPHERAL_TYPE_PWM = 0x0d,
 PERIPHERAL_TYPE_FRC = 0x0e,

 PERIPHERAL_TYPE_USER_AREA = 0x80,

(*) Standard peripheral of this type not defined and implemented yet

 9.5 Custom DPA Handler Events

#define DpaEvent_DpaRequest 0
#define DpaEvent_Interrupt 1
#define DpaEvent_Idle 2
#define DpaEvent_Init 3
#define DpaEvent_Notification 4
#define DpaEvent_AfterRouting 5
#define DpaEvent_BeforeSleep 6
#define DpaEvent_AfterSleep 7
#define DpaEvent_Reset 8
#define DpaEvent_DisableInterrupts 9
#define DpaEvent_FrcValue 10
#define DpaEvent_ReceiveDpaResponse 11
#define DpaEvent_IFaceReceive 12
#define DpaEvent_ReceiveDpaRequest 13
#define DpaEvent_BeforeSendingDpaResponse 14
#define DpaEvent_PeerToPeer 15
#define DpaEvent_AuthorizePreBonding 16
#define DpaEvent_UserDpaValue 17
#define DpaEvent_FrcResponseTime 18

 9.6 Extended Peripheral Characteristic

 PERIPHERAL_TYPE_EXTENDED_DEFAULT = 0b00,
 PERIPHERAL_TYPE_EXTENDED_READ = 0b01,
 PERIPHERAL_TYPE_EXTENDED_WRITE = 0b10,
 PERIPHERAL_TYPE_EXTENDED_READ_WRITE = PERIPHERAL_TYPE_EXTENDED_READ |
 PERIPHERAL_TYPE_EXTENDED_WRITE

 9.7 HW Profile IDs

HWPID_Default = 0, // No HW Profile specified
HWPID_DoNotCheck = 0xffff // Use this type to override HW Profile ID check

 9.8 LED Colors

 LED_COLOR_RED = 0,
 LED_COLOR_GREEN = 1,
 LED_COLOR_BLUE = 2,
 LED_COLOR_YELLOW = 3,
 LED_COLOR_WHITE = 4,
 LED_COLOR_UNKNOWN = 0xff

 9.9 Baud rates

 DpaBaud_1200 = 0x00,
 DpaBaud_2400 = 0x01,
 DpaBaud_4800 = 0x02,
 DpaBaud_9600 = 0x03,
 DpaBaud_19200 = 0x04,
 DpaBaud_38400 = 0x05,

 IQRF DPA

© 2013-2015 MICRORISC s.r.o. www.iqrf.org Tech_Guide_DPA_Framework150805 Page 80

 DpaBaud_57600 = 0x06,
 DpaBaud_115200 = 0x07

 9.10 User FRC Codes

#define FRC_USER_BIT_FROM 0x40
#define FRC_USER_BIT_TO 0x7F
#define FRC_USER_BYTE_FROM 0xC0
#define FRC_USER_BYTE_TO 0xDF
#define FRC_USER_2BYTE_FROM 0xF0
#define FRC_USER_2BYTE_TO 0xFF

 IQRF DPA

© 2013-2015 MICRORISC s.r.o. www.iqrf.org Tech_Guide_DPA_Framework150805 Page 81

 10 Apendix

 10.1 CRC Calculation

The following examples show the implementation of 1-Wire CRC used to check UART Interface data.
Before using the routines do not forget to initialize CRC accumulator variable to the initial value 0xFF.

 10.1.1 CC5X Compiler

// One Wire CRC
static uns8 OneWireCrc;

// Updates crc at OneWireCrc variable , parameter value is an input data byte
void UpdateOneWireCrc(uns8 value @ W)
{
 OneWireCrc ^= value;
#pragma update_RP 0 /* OFF */
 value = 0;
 if (OneWireCrc .7)
 value ^= 0x8c; // 0x8C is reverse polynomial representation
 if (OneWireCrc .6) // (normal is 0x31)
 value ^= 0x46;
 if (OneWireCrc .5)
 value ^= 0x23;
 if (OneWireCrc .4)
 value ^= 0x9d;
 if (OneWireCrc .3)
 value ^= 0xc2;
 if (OneWireCrc .2)
 value ^= 0x61; // ƛ
 if (OneWireCrc .1) // 1 instruction
 value ^= 0xbc; // 1 instruction
 if (OneWireCrc .0) // 1 instruction
 value ^= 0x5e; // 1 instruction
 OneWireCrc = value; // 1 instruction
#pragma update_RP 1 /* ON */
}

 10.1.2 C#

/// <summary>
/// Computes 1 - Wire CRC
/// </summary>
/// <param name="value"> Input data byte </param>
/// <param name="crc"> Updated CRC</param>
static void UpdateOneWireCrc (byte value, ref byte crc)
{
 for (int bitLoop = 8; bitLoop != 0; -- bitLoop, value >>= 1)
 if (((crc ^ value) & 0x01) != 0)
 crc = (byte)((crc >> 1) ^ 0x8C);
 else
 crc >>= 1;
}

 10.1.3 Java

/**
 * Returns new value of CRC.
 * @param crc current value of CRC
 * @param value input data byte
 * @return updated value of CRC
 */
static short updateCRC(short crc , short value) {
 for (int bitLoop = 8; bitLoop != 0; -- bitLoop , value >>= 1) {

http://www.bknd.com/cc5x/
http://java.com/

 IQRF DPA

© 2013-2015 MICRORISC s.r.o. www.iqrf.org Tech_Guide_DPA_Framework150805 Page 82

 if (((crc ^ value) & 0x01) != 0) {
 crc = (short)((crc >> 1) ^ 0x8C);
 } else {
 crc >>= 1;
 }
 }
 return crc ;
}

 10.1.4 Pascal/Delphi

/// <summary>
/// Computes 1 - Wire CRC
/// </summary>
/// <param name="value">Input data byte</param>
/// <param name="crc">Updated CRC</param>
procedure UpdateOneWireCrc (value : byte ; var crc : byte);
var
 bitLoop : integer ;
begin
 for bitLoop := 8 downto 1 do begin
 if (((crc xor value) and $01) <> 0) then
 crc := (crc shr 1) xor $8C
 else
 crc := crc shr 1;
 value := value shr 1;
 end;
end;

 IQRF DPA

© 2013-2015 MICRORISC s.r.o. www.iqrf.org Tech_Guide_DPA_Framework150805 Page 83

 11 Migration Notes

 11.1 From DPA 2.13 to DPA 2.20

¶ For DCTR-7x Custom DPA handler Flash memory block extended to 864 instructions.

¶ [N] and [CN] devices send “Reset” DPA response when started the same way the [C] already did.

¶ Read HWP request configuration documented and returned checksum updated.

¶ Bridge response improved.

¶ DPA API variable LP_XLP_toutRF renamed to LPtoutRF

¶ EEEPROM peripheral allows reading and writing of variable number of bytes.

¶ For bug fixes see Release notes.

 11.2 From DPA 2.11 to DPA 2.13

¶ Bug fixes only, see Release notes.

 11.3 From DPA 2.11 to DPA 2.12

¶ Bug fixes only, see Release notes.

 11.4 From DPA 2.10 to DPA 2.11

¶ Bug fixes only, see Release notes.

 11.5 From DPA 2.01 to DPA 2.10

¶ Foursome parameters NAdr, PNum, PCmd capitalized to NADR, PNUM and PCMD.

¶ Foursome parameter HwProfile renamed to HWPID.

¶ Updated timing recommendation, see DPA Confirmation.

¶ DpaEvent_None event renamed to DpaEvent_DpaRequest.

¶ CMD_OS_SLEEP – Control bit 0 and bit 3 functionality enhanced and changed.

¶ Brown-out Reset disabled after device starts.

¶ Extra 32 bytes added to both EEPROM and EEEPROM peripherals.

¶ IQRF OS variable DataOutBeforeResponseFRC type changed from uns16 to uns8[30].

¶ System DPA value bit 0 returns value of DSMactivated variable.

¶ DpaApiSendToIFaceMaster has a new parameter.

¶ User DPA Value is stored at UserDpaValue variable. It is not transferred via userReg0 variable at
Idle event only anymore.

¶ Set Hops does not limit number of hops to the VRN of the addressed and discovered node
anymore.

¶ UART interface uses more sophisticated 8-bit CRC instead of simple XOR checksum to protect
data.

¶ DpaApiSendToIFaceMaster works even when IFaceMasterNotConnected is set in case when
UART interface is used.

¶ DpaApiRfTxDpaPacketCoordinator now returns number of hops to deliver DPA response back to
coordinator.

¶ For bug fixes see Release notes.

 11.6 From DPA 2.00 to DPA 2.01

¶ Bug fixes only, see Release notes.

 11.7 From DPA 1.00 to DPA 2.00

¶ Every DPA Request/Response contains new 2B HWPID parameter, see General message
parameters.

 IQRF DPA

© 2013-2015 MICRORISC s.r.o. www.iqrf.org Tech_Guide_DPA_Framework150805 Page 84

¶ Changes of parameters or response results of the following commands, services or API:
CMD_COORDINATOR_DISCOVERY, CMD_COORDINATOR_BACKUP, CMD_COORDINATOR_RESTORE,
CMD_NODE_ENABLE_REMOTE_BONDING, CMD_NODE_READ, CMD_OS_READ_CFG, CMD_OS_READ,
CMD_OS_BATCH, CMD_UART_OPEN, Peripheral enumeration, Autoexec, DpaApiRfTxDpaPacket.

¶ [C] device sends „Reset“ message upon startup, see Device Startup.

¶ Notification event called even after read-only DPA response.

¶ Custom DPA Handler location and reserved Flash memory size changed and events renumbered.
Custom DPA Handler must be recompiled and uploaded.

¶ Custom DPA Handler must use case DpaEvent_None: instead of default:

¶ Event DpaEvent_Async renamed to DpaEvent_AfterRouting.

¶ Node can address the coordinator by COORDINATOR_ADDRESS or LOCAL_ADDRESS. See
DpaApiRfTxDpaPacket.

¶ Changed LED indication style of the forbidden address upon Node startup at demo mode.

¶ Standard LED peripherals are not limited to demo version only.

 12 Document Revisions
150805 DPA v2.20 release.
150130 DPA v2.13 release.
150115 DPA v2.12 release.
141119 DPA v2.11 release.
141105 DPA v2.10 release.
130602 DPA v2.01 release.
130512 DPA v2.00 release.

 IQRF DPA

© 2013-2015 MICRORISC s.r.o. www.iqrf.org Tech_Guide_DPA_Framework150805 Page 85

Sales and Service

Corporate office

MICRORISC s.r.o., Prumyslova 1275, 506 01 Jicin, Czech Republic, EU
Tel: +420 493 538 125, Fax: +420 493 538 126, www.microrisc.com.

Partners and distribution

Please visit www.iqrf.org/partners.

Quality management

ISO 9001 : 2009 certified

Trademarks

The IQRF name and logo and MICRORISC name are registered trademarks of MICRORISC s.r.o.
PIC, SPI, Microchip and all other trademarks mentioned herein are property of their respective
owners.

Legal

All information contained in this publication is intended through suggestion only and may be
superseded by updates without prior notice. No representation or warranty is given and no liability is
assumed by MICRORISC s.r.o. with respect to the accuracy or use of such information.

Without written permission it is not allowed to copy or reproduce this information, even partially.

No licenses are conveyed, implicitly or otherwise, under any intellectual property rights.

The IQRF È products utilize several patents (CZ, EU, US)

On-line support: support@iqrf.org

http://www.microrisc.com/
http://www.iqrf.org/partners
mailto:support@iqrf.org?subject=IQRF%20Support%20Request

	1 Introduction
	2 Basics
	2.1 Device types
	2.2 RF Modes
	2.3 Interfaces
	2.3.1 SPI
	2.3.2 UART
	2.3.3 Peripherals vs. Interfaces
	2.3.3.1 Peripherals

	2.4 DPA Plug-in filename
	2.5 General message parameters
	2.6 DPA Messages
	2.6.1.1 Interfaces
	2.6.2 DPA Request
	2.6.3 DPA Confirmation
	2.6.4 DPA Notification
	2.6.5 DPA Response
	2.6.6 Examples

	2.7 Device exploration
	2.7.1 Peripheral enumeration
	2.7.1.1 Source code support

	2.7.2 Get peripheral information
	2.7.2.1 Source code support

	2.7.3 Get information for more peripherals
	2.7.3.1 Source code support

	3 Peripherals
	3.1 Standard operations in general
	3.1.1 Writing to peripheral
	3.1.1.1 Source code support

	3.1.2 Reading from peripheral
	3.1.2.1 Source code support

	3.2 Coordinator
	3.2.1 Peripheral information
	3.2.2 Get addressing information
	3.2.2.1 Source code support

	3.2.3 Get discovered nodes
	3.2.4 Get bonded nodes
	3.2.4.1 Source code support

	3.2.5 Clear all bonds
	3.2.6 Bond node
	3.2.6.1 Source code support

	3.2.7 Remove bonded node
	3.2.7.1 Source code support

	3.2.8 Re-bond node
	3.2.8.1 Source code support

	3.2.9 Discovery
	3.2.9.1 Source code support

	3.2.10 Set DPA Param
	3.2.10.1 Source code support

	3.2.11 Set Hops
	3.2.11.1 Source code support

	3.2.12 Discovery data
	3.2.12.1 Source code support

	3.2.13 Backup
	3.2.13.1 Source code support

	3.2.14 Restore
	3.2.14.1 Source code support

	3.2.15 Authorize bond
	3.2.15.1 Source code support

	3.2.16 Bridge
	3.2.16.1 Source code support

	3.2.17 Enable remote bonding
	3.2.18 Read remotely bonded module ID
	3.2.19 Clear remotely bonded module ID

	3.3 Node
	3.3.1 Peripheral information
	3.3.2 Read
	3.3.2.1 Source code support

	3.3.3 Remove bond
	3.3.4 Enable remote bonding
	3.3.4.1 Source code support

	3.3.5 Read remotely bonded module ID
	3.3.5.1 Source code support

	3.3.6 Clear remotely bonded module ID
	3.3.7 Remove bond address
	3.3.8 Backup
	3.3.9 Restore

	3.4 OS
	3.4.1 Peripheral information
	3.4.2 Read
	3.4.2.1 Source code support

	3.4.3 Reset
	3.4.4 Restart
	3.4.5 Read HWP configuration
	3.4.5.1 Source code support

	3.4.6 Write HWP configuration
	3.4.6.1 Source code support

	3.4.7 Run RFPGM
	3.4.8 Sleep
	3.4.8.1 Source code support

	3.4.9 Batch
	3.4.10 Set USEC
	3.4.10.1 Source code support

	3.4.11 Set MID
	3.4.11.1 Source code support

	3.5 EEPROM
	3.5.1 Peripheral information
	3.5.2 Read
	3.5.2.1 Source code support

	3.5.3 Write
	3.5.3.1 Source code support

	3.6 EEEPROM
	3.6.1 Peripheral information
	3.6.2 Read & Write

	3.7 RAM
	3.7.1.1 Source code support
	3.7.2 Peripheral information
	3.7.3 Read & Write

	3.8 SPI (Slave)
	3.8.1 Peripheral information
	3.8.2 Write & Read

	3.9 LED
	3.9.1 Peripheral information
	3.9.2 Set
	3.9.3 Get
	3.9.4 Pulse

	3.10 IO
	3.10.1 Peripheral information
	3.10.2 Direction
	3.10.2.1 Source code support

	3.10.3 Set
	3.10.3.1 Source code support

	3.10.4 Get

	3.11 Thermometer
	3.11.1 Peripheral information
	3.11.2 Read
	3.11.2.1 Source code support

	3.12 PWM
	3.12.1 Peripheral information
	3.12.2 Set
	3.12.2.1 Source code support

	3.13 UART
	3.13.1 Peripheral information
	3.13.2 Open
	3.13.2.1 Source code support

	3.13.3 Close
	3.13.4 Write & Read
	3.13.4.1 Source code support

	3.14 FRC
	3.14.1 Peripheral information
	3.14.2 Send
	3.14.2.1 Source code support

	3.14.3 Extra result
	3.14.4 Send Selective
	3.14.4.1 Source code support

	3.14.5 Set FRC Params
	3.14.5.1 Source code support

	3.14.6 Predefined FRC Commands
	3.14.6.1 Prebonding
	3.14.6.2 UART or SPI data available
	3.14.6.3 Acknowledged broadcast - bits
	3.14.6.4 Read temperature
	3.14.6.5 Acknowledged broadcast - bytes
	3.14.6.6 Memory read
	3.14.6.7 Memory read plus 1
	3.14.6.8 FRC response time

	4 HWP Configuration
	5 Device Startup
	6 Autoexec
	7 IO Setup
	8 Custom DPA Handler
	8.1 Handler Example
	8.2 Events Flow
	8.2.1 Coordinator
	8.2.2 Node
	8.2.3 General evens
	8.2.3.1 Interrupt
	8.2.3.2 Disable Interrupts
	8.2.3.3 Sleep Events

	8.3 Events
	8.3.1 Interrupt
	8.3.2 Idle
	8.3.3 Init
	8.3.4 Notification
	8.3.5 AfterRouting
	8.3.6 BeforeSleep
	8.3.7 AfterSleep
	8.3.8 Reset
	8.3.9 Disable Interrupts
	8.3.10 FrcValue
	8.3.11 FrcResponseTime
	8.3.12 ReceiveDpaResponse
	8.3.13 IFaceReceive
	8.3.14 ReceiveDpaRequest
	8.3.15 BeforeSendingDpaResponse
	8.3.16 PeerToPeer
	8.3.17 AuthorizePreBonding
	8.3.18 UserDpaValue
	8.3.19 DPA Request
	8.3.19.1 Enumerate Peripherals
	8.3.19.2 Get Peripheral Info
	8.3.19.3 Handle Peripheral Request

	8.4 DPA API
	8.4.1 DpaApiRfTxDpaPacket
	8.4.2 DpaApiReadConfigByte
	8.4.3 DpaApiSendToIFaceMaster
	8.4.4 DpaApiRfTxDpaPacketCoordinator
	8.4.5 DpaApiLocalRequest
	8.4.6 DpaApiReturnPeripheralError

	8.5 DPA API Variables
	8.5.1 bit ProvidesRemoteBonding
	8.5.2 bit RemoteBondingDone
	8.5.3 bit IFaceMasterNotConnected
	8.5.4 bit NodeWasBonded
	8.5.5 bit EnableIFaceNotificationOnRead
	8.5.6 uns16 DpaTicks
	8.5.7 uns8 LPtoutRF
	8.5.8 uns8 ResetType
	8.5.9 bit DSMactivated
	8.5.10 uns8 UserDpaValue
	8.5.11 uns8 NetDepth

	9 Constants
	9.1 Peripheral Numbers
	9.2 Response Codes
	9.3 DPA Commands
	9.4 Peripheral Types
	9.5 Custom DPA Handler Events
	9.6 Extended Peripheral Characteristic
	9.7 HW Profile IDs
	9.8 LED Colors
	9.9 Baud rates
	9.10 User FRC Codes

	10 Apendix
	10.1 CRC Calculation
	10.1.1 CC5X Compiler
	10.1.2 C#
	10.1.3 Java
	10.1.4 Pascal/Delphi

	11 Migration Notes
	11.1 From DPA 2.13 to DPA 2.20
	11.2 From DPA 2.11 to DPA 2.13
	11.3 From DPA 2.11 to DPA 2.12
	11.4 From DPA 2.10 to DPA 2.11
	11.5 From DPA 2.01 to DPA 2.10
	11.6 From DPA 2.00 to DPA 2.01
	11.7 From DPA 1.00 to DPA 2.00

	12 Document Revisions

